

Astorino
Vision System Manual

Astorino

ASTORINO Vision System Manual

I

Preface

This manual describes the handling of the 6-axis robot “astorino"

Vision System option.

The ASTORINO is a learning robot specially developed for educational in-

stitutions. Pupils and students can use the ASTORINO to learn robot-as-

sisted automation of industrial processes in practice.

ASTORINO Vision System Manual

II

1. The "astorino" software included with the ASTORINO is licensed for use

with this robot only and may not be used, copied or distributed in any

other environment.

2. Kawasaki shall not be liable for any accidents, damages, and/or prob-

lems caused by improper use of the ASTORINO robot.

3. Kawasaki reserves the right to change, revise, or update this manual

without prior notice.

4. This manual may not be reprinted or copied in whole or in part without

prior written permission from Kawasaki.

5. Keep this manual in a safe place and within easy reach so that it can be

used at any time. If the manual is lost or seriously damaged, contact

Kawasaki.

Copyright © 2024 by KAWASAKI Robotics GmbH.

All rights reserved.

Symbols

Items that require special attention in this manual are marked with the fol-

lowing symbols.

Ensure proper operation of the robot and prevent injury or property dam-

age by following the safety instructions in the boxes with these symbols.

Failure to observe the specified contents could

possibly result in injury or, in the worst case,

death.

WARNING

Identifies precautions regarding robot specifications,

handling, teaching, operation, and maintenance.

[ATTENTION]

WARNING

1. The accuracy and effectiveness of the diagrams,

procedures and explanations in this manual cannot

be confirmed with absolute certainty. Should any un-

explained problems occur, contact Kawasaki Robotics

GmbH at the above address.

2. To ensure that all work is performed safely, read and

understand this manual. In addition, refer to all applica-

ble laws, regulations, and related materials, as well as

the safety statements described in each chapter.

Prepare appropriate safety measures and procedures

for actual work.

ASTORINO Vision System Manual

2

Paraphrases

The following formatting rules are used in this manual:

• For a particular keystroke, the respective key is enclosed in angle

brackets, e.g. <F1> or <Enter>.

• For the button of a dialog box or the toolbar, the button name is

enclosed in square brackets, e.g. [Ok] or [Reset].

• Selectable fields are marked with a square box .

If selected a check mark is shown inside the symbol ☑.

ASTORINO Vision System Manual

3

List of contents

Preface .. I

Symbols ... 1

Paraphrases .. 2

List of contents ... 3

1 Nomenclature in this manual .. 4

2 Overview of ASTORINO ... 4

3 Technical specifications .. 5

4 Conveyor package contents.. 6

5 Dimensions .. 7

6 openMV - overview ... 8

7 Installation... 8

7.1 Camera connection .. 9

8 Vision system – general information ...10

9 astorino – openMV example app ..12

9.1 Camera programs ..12

9.2 Robot program ...12

10 Calibration instructions ..13

10.1 Program modifications ...13

10.1.1 Code configuration ..13

10.2 Calibration..15

10.2.1 Point 1 ...15

10.2.2 Point 2 ...16

10.2.3 Point 3 ...17

10.2.4 Point 4 ...18

10.3 Input the saved positions into the program ..19

10.4 Serial communication ..19

10.5 Quick program setup ...20

10.6 Algorithm description ...20

10.7 Infinite loop program ...20

10.8 Save the program in the camera ...21

11 Manufacturer information ..22

Appendix A – Camera stand assembly ...23

Appendix B – calibration program code ...24

Appendix C – cube find program code ...28

Appendix D – robot program code ..32

ASTORINO Vision System Manual

4

1 Nomenclature in this manual

The author of the manual tries to use generally valid terminology while

achieving the greatest possible logical sense. Unfortunately, it must be

noted that the terminology is reversed depending on the point of view

when considering one and the same topic. Also it is to be stated that in the

course of the computer and software history terminologies developed in dif-

ferent way. One will find therefore in a modern manual no terminologies,

which always satisfy 100% each expert opinion.

2 Overview of ASTORINO

The ASTORINO is a 6-axis learning robot developed specifically for educa-

tional institutions such as schools and universities. The robot design is

based to be 3D printed with PET-G filament. Damaged parts can be repro-

duced by the user using a compatible 3D printer.

Programming and control of the robot is done by the "astorino" software.

The latest software version and 3D files can be downloaded from the KA-

WASAKI ROBOTICS FTP server:

https://ftp.kawasakirobot.de/Software/Astorino/

Just like Kawasaki’s industrial Robots the ASTORINO is programmed using

AS language. Providing transferable programming skills from the class-

room to real industrial applications.

https://ftp.kawasakirobot.de/Software/Astorino/

ASTORINO Vision System Manual

5

3 Technical specifications

Characteristics Astorino Conveyor

Working environment
Temperature 15–35°C

Humidity 35–60%

Processor ARM® 32-bit Cortex®-M7 CPU

RAM 33MB

Supported Image Formats

Grayscale

RGB565

JPEG

Max. Supported Resolutions
2952x1944

25-50 FPS on QVGA (320x240)

Lens Info

Focal Length: 2.8mm

Aperture: F2.0

Format: 1/3"

HFOV = 70.8°, VFOV = 55.6°

Mount: M12*0.5

IR Cut Filter: 650nm (removable)

Power supply
5V – Camera

12V - Light

Power Consumption

Idle: 140mA @ 3.3V

Active: 230mA @ 3.3V

Light – 300 mA @ 12V

Programming language MicroPython

Programming interface MicroUSB

Programming software OpenMV IDE

Material PET-G

Colour Black

Communication UART (Serial)

Weight 50g

Possible applications

TensorFlow lite for microcontrollers
support

Frame differencing

Colour tracking

Marker tracking

Face detection

Eye-tracking

Person detection

Optical flow

QR code detection/Decoding

Data matrix detection/Decoding

Linear barcode decoding

April Tag tracking

Line detection

Circle detection

Rectangle detection

ASTORINO Vision System Manual

6

4 Conveyor package contents

Item quantity Name

1 3 2020

2 2 Camera mount

3 3 Angle brackets

4 2 12 V Power Supply

5 1 Micro USB cable

ASTORINO Vision System Manual

7

5 Dimensions

ASTORINO Vision System Manual

8

6 openMV - overview

The OpenMV Cam is a small, low power, microcontroller board which allows

you to easily implement applications using machine vision in the real-world.

You program the OpenMV Cam in high level Python scripts (courtesy of the

MicroPython Operating System) instead of C/C++. This makes it easier to

deal with the complex outputs of machine vision algorithms and working

with high level data structures. But, you still have total control over your

OpenMV Cam. For more info, openMV IDE operation manual and MicroPy-

thon please see the on-line documentation.

https://docs.openmv.io/openmvcam/tutorial/index.html

7 Installation

To use openMV camera please download and install newest OpenMV IDE

from this webside:

https://openmv.io/pages/download

Please also see Quickref to get familiar with the system

https://docs.openmv.io/openmvcam/quickref.html

https://docs.openmv.io/openmvcam/tutorial/index.html
https://openmv.io/pages/download
https://docs.openmv.io/openmvcam/quickref.html

ASTORINO Vision System Manual

9

7.1 Camera connection

Connect LED power cable, micro USB for programming and Power/Data

cable to astorino Serial port.

Power/Data

USB – programming

LED power

ASTORINO Vision System Manual

10

8 Vision system – general information

OpenMV camera can find on the pictures different shapes or colour blobs.

Corners finding

Colour blobs finding

There are many example project to help start with this system with differ-

ent detection features.

Position of this objects is returned in camera coordinate system and in pix-

els.

Robot BASE

coordinate system

Camera

coordinate system

ASTORINO Vision System Manual

11

Because the coordinate systems and scales are different robot cannot oper-

ate on camera raw data, we need to transform the object position from pix-

els to mm relative to the robot base.

For that we need to define a rotation matrix [4x4] and scale factor which

will transform object position to BASE coordinate system and also scale pix-

els to millimetres.

𝐻 = [

𝑅1 𝑅4
𝑅2 𝑅5
𝑅3 𝑅6
0 0

𝑅7 𝑇𝑥
𝑅8 𝑇𝑦
𝑅9 𝑇𝑧
0 1

]

Where R1..R9 are describing the change in rotation and Tx..Tz are describ-

ing the change in position.

Example app already is using this method.

ASTORINO Vision System Manual

12

9 astorino – openMV example app

Astorino example Vision system app is a pick and place demo.

The flow of this demo is like this:

• Robot picks a cube from a cube feeder,

• Places it under the camera,

• Camera takes the picture and finds the cubes,

• Cube position is transmitted to the robot

• Robot picks the cube and places it in the red bucket.

9.1 Camera programs
There are two vision system programs:

• Calibration – used to set a calibration data (H matrix and scale)

• Finding objects – used with robot program to pick cubes)

9.2 Robot program
Ther is one example robot program which reads data from a camera,

creates a destination point and goes to taht point to pick the cube.

ASTORINO Vision System Manual

13

10 Calibration instructions

The openMV camera detects objects in its field of view and converts the co-

ordinates of their center, in pixels, to coordinates in the robot's working field

(in millimeters).

10.1 Program modifications

10.1.1 Code configuration

Depending on the configuration of the camera settings, the exposure of the

object and external factors, modify the following part of the code:

For easier selection of the following parameters, use the calibration program,

which continuously displays the coordinates of detected objects and allows

viewing the camera image.

• w_x – x-coordinate (in pixels) specifying the upper left corner of the

selected image analysis area from the entire camera view.

• w_y – y-coordinate (in pixels) specifying the upper left corner of the

selected image analysis area from the entire camera view.

• w_width – the width of the analyzed area (in pixels) starting from w_x.

• w_hight – the height of the analyzed area (in pixels) starting from w_y.

• fisheye_corr – The fisheye correction of the camera should be selected

according to the height of its mounting.

• c_frm_px – from the camera view, read the coordinates of the

boundary points of the work area in pixels (for example, by copying

the camera view into a graphics program or by clicking on the corre-

sponding pixels in the view in the OpenMV application). Enter the co-

ordinates in the following order: start with the leftmost point (value

ASTORINO Vision System Manual

14

in pixels) in the camera view, enter subsequent points in counter-

clockwise order.

Coordinates of the selected pixel displayed under the camera view

• r_frm_p – reaching with the robot to the successive boundary points

(the same as in the above point) of the working area, detected by the

camera, enter the x and y coordinates read from the astorino applica-

tion (JOG tab: X, Y). Enter the coordinates in the following order: start

from the leftmost point in the camera view, enter the subsequent

points in counterclockwise order (the same as in the above point).

It is important that the c_frm_px and r_frm_p coordinates are entered in

the same order!

2.

c_frm_px: (x2, y2) [px]

r_frm_p: (x2, y2) [mm]

3.

c_frm_px: (x3, y3) [px]

r_frm_p: (x3, y3) [mm]

4.

c_frm_px: (x4, y4) [px]

r_frm_p: (x4, y4) [mm]

1.

c_frm_px: (x1, y1) [px]

r_frm_p: (x1, y1) [mm]

ASTORINO Vision System Manual

15

10.2 Calibration
Please run calibration program on OpenMV IDE.

10.2.1 Point 1

Using mouse cursor read the pixel position of the corner

Move robot to the corner and save the position.

ASTORINO Vision System Manual

16

10.2.2 Point 2

Using mouse cursor read the pixel position of the corner

Move robot to the corner and save the position.

ASTORINO Vision System Manual

17

10.2.3 Point 3

Using mouse cursor read the pixel position of the corner

Move robot to the corner and save the position.

ASTORINO Vision System Manual

18

10.2.4 Point 4

Using mouse cursor read the pixel position of the corner

Move robot to the corner and save the position.

ASTORINO Vision System Manual

19

10.3 Input the saved positions into the program

• thresholds – determines how dark (black) in a grayscale detected ob-

ject is. It uses the LAB color space (thresholds = [Lmin, Lmax, Amin,

Amax, Bmin, Bmax]). When detecting objects in grayscale, you only

need to set the first 2 parameters.

• off_x – possible offset in the x-direction of the detected points (in mil-

limeters).

• off_y – possible offset in the y-direction of the detected points (in mil-

limeters).

• off_ang – possible offset of the rotation angle of the camera coordinate

system and the robot workspace (in radians).

10.4 Serial communication

The following parameters refer to the configuration of communication be-

tween the camera and the robot:

• trigger – determines what character the camera expects. If the re-

ceived sign is the same as the trigger variable, the camera will send

back the calculated coordinates.

• separator1 – determines what character will separate the sent X coor-

dinate from the Y coordinate.

• separator2 – determines what character will separate the sent X coor-

dinate from the angle of rotation - A.

• separator3 – determines what character will appear at the end of the

sent batch of data.

For the above example, after receiving the "T" sign, the data sent will take

the form: X/Y/A/

1 2 3 4

 1 2 3 4

ASTORINO Vision System Manual

20

10.5 Quick program setup
1. Mount the camera in the desired location so that the working area can

be seen perpendicularly.

2. Turn on the camera and run the calibration program.

3. set the w_x, w_y, w_width and w_hight parameters so that the pre-

view shows the entire working area dedicated to the camera.

4. Set the fisheye_corr parameter to best correct the image distortion

caused by the camera's fisheye.

5. enter the appropriate coordinates in the camera view c_frm_px [px]

and the manipulator workspace r_frm_p [mm] (remember the correct

order!) as described in the above section.

6. Set the thresholds parameter so that your objects are detected

properly.

7. Based on the results obtained, make corrections with the parameters

off_x, off_y, off_ang.

8. Configure the parameters for communication by setting trigger, sepa-

rator1, separator2 and separator3 to the desired characters.

10.6 Algorithm description

Based on the entered parameters (section 1.1), the program calculates suc-

cessively:

• scale - the ratio of millimeters in the workspace to the pixels visible in

the camera image,

• the angle of rotation of the camera in relation to the robot's workspace,

• the corresponding sum angle.

Then the rotation matrix is created and the displacement vector is calculated.

The results obtained in this way allow to create a transformation matrix.

10.7 Infinite loop program

1. The program checks the received data via UART. If the received data

is as expected, an attempt is made to detect the object.

2. If the object is detected, the coordinates of its occurrence (pixels) are

collected.

3. The coordinates are converted from pixels to millimeters (using a

transformation matrix).

4. If the object is not detected, the camera will send back the coordinates

(X=0, Y=0).

The converted coordinates are sent via UART.

ASTORINO Vision System Manual

21

10.8 Save the program in the camera

After successful calibration, the applied program can be saved to the cam-

era's memory so that it runs when the camera is turned on. To do this,

expand the "tools" tab from the ribbon of the OpenMV IDE application and

select "Save open script to OpenMV Cam (as main.py)".

The program saved in this way will start automatically when the camera is

connected to the power supply (from a computer via USB port or using an

external power supply).

ASTORINO Vision System Manual

22

11 Manufacturer information

For further questions, contact Kawasaki Robotics support.

Contact:

Kawasaki Robotics GmbH

tech-support@kawasakirobot.de

+49 (0) 2131 – 3426 – 1310

Kawasaki Robot

Vision System Manual

2024-12: 3rd Edition

Publication: KAWASAKI Robotics GmbH

Copyright © 2024 by KAWASAKI Robotics GmbH.

All rights reserved.

ASTORINO Vision System Manual

23

Appendix A – Camera stand assembly

Connect together two 2020x250mm profiles with T-NUT butt joint brackets,

Connect angle brackets to profiles with M5 screws,

Connect 2020x200mm to other profiles with angle bracket, t-nuts and M5

screws,

Install camera to the 2020x200mm using delivered 3D printed angle brack-

ets, T-nuts, M5 screws and M3 screws screws with nuts,

ASTORINO Vision System Manual

24

Appendix B – calibration program code

import sensor, image, time, lcd, math

from pyb import LED

from pyb import UART

from pyb import Pin

##calibration

w_x = 170 #dimensions and location of the examined area (part of the cam-

era view: x coefficient, y coefficient, width, height)

w_y = 100

w_width = 346

w_hight = 260

fisheye_corr = 0.7 #camera fisheye correction

c_frm_px = [[18, 232],[334, 235],[330, 17],[24, 7]] #pixel coordinates of

physical points

r_frm_p = [[-135.4, 409.6],[-131.0, 203.7],[22.7, 197.6],[16.6,

408.9]]#physical coordinates of points

thresholds = (0, 55) #how gray (black) grayscale objects are to be de-

tected

off_x = 0 #offset (possible position correction in mm)

off_y = 0

off_ang = 0.09004

##

##########################

temp = 0;

for i in range(4):

 if r_frm_p[i][1] + r_frm_p[(i + 1)%4][1] < r_frm_p[temp][1] +

r_frm_p[(temp + 1)%4][1]:

 temp = i

pos_case = temp

H0_C = [[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]] #trans-

formation matrix

P0 = [[0], [0], [0], [0]] #result

point

R_z = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] #rota-

tion matrix

#scale mm/px

r_diff = math.sqrt(math.pow((r_frm_p[2][0] - r_frm_p[0][0]), 2) +

math.pow((r_frm_p[2][1] - r_frm_p[0][1]), 2))

c_diff = math.sqrt(math.pow((c_frm_px[2][0] - c_frm_px[0][0]), 2) +

math.pow((c_frm_px[2][1] - c_frm_px[0][1]), 2))

scale = r_diff/c_diff

#rotation r

d1_r = math.sqrt(math.pow((r_frm_p[1][1] - r_frm_p[2][1]), 2))

d2_r = math.sqrt(math.pow((r_frm_p[1][0] - r_frm_p[2][0]), 2) +

math.pow((r_frm_p[1][1]) - (r_frm_p[2][1]), 2))

ASTORINO Vision System Manual

25

r_angle = (math.asin(d1_r/d2_r))

#rotation c (based on pixel points)

d1_c = math.sqrt(math.pow((c_frm_px[1][1] - c_frm_px[2][1]), 2))

d2_c = math.sqrt(math.pow((c_frm_px[1][0] - c_frm_px[2][0]), 2) +

math.pow((c_frm_px[1][1]) - (c_frm_px[2][1]), 2))

c_angle = math.asin(d1_c/d2_c)

#angles sum

if pos_case == 1 or pos_case == 2:

 pos_case_ang = 0

else:

 pos_case_ang = 1

angle = c_angle + r_angle + (math.pi * pos_case_ang) - off_ang

#rotation 180 (relative to x)

R180 = [[1, 0, 0], [0, math.cos(math.pi), -math.sin(math.pi)], [0,

math.sin(math.pi), math.cos(math.pi)]]

#rotation matrix of camera arrays by angle

R_a = [[math.cos(angle), -math.sin(angle), 0], [math.sin(angle),

math.cos(angle), 0], [0, 0, 1]]

#rotation matrix

for i in range(len(R180)):

 for j in range(len(R_a[0])):

 for k in range(len(R_a)):

 R_z[i][j] += R180[i][k] * R_a[k][j]

#shift vector - finding the shift vector depending on the position case

x_ = ((c_frm_px[pos_case][1] + c_frm_px[(pos_case+1)%4][1])/2)

y_ = ((c_frm_px[pos_case][0] + c_frm_px[(pos_case+1)%4][0])/2)

d0_x = x_ * math.cos(math.pi/2 - angle) - y_ * math.sin(math.pi/2 - angle)

+ (r_frm_p[pos_case][0] + r_frm_p[(pos_case+1)%4][0])/(2 * scale)

d0_y = x_ * math.sin(math.pi/2 - angle) + y_ * math.cos(math.pi/2 - angle)

+ (r_frm_p[pos_case][1] + r_frm_p[(pos_case+1)%4][1])/(2 * scale)

d0_C = [d0_x, d0_y, 0, 1]

#H0_C matrix (rotation matrix and translation matrix in one)

for i in range(len(R_z)):

 for j in range(len(R_z[i])):

 H0_C[i][j] = R_z[i][j]

for i in range(len(d0_C)):

 H0_C[i][3] = d0_C[i]

###camera settings###

clock = time.clock()

r = (0,0,269,217)

window = (w_x,w_y,w_width,w_hight)

low_threshold = (30, 160)

uart = UART(3, 9600, timeout_char=1000)

angle = 0

red_led = LED(1)

green_led = LED(2)

blue_led = LED(3)

a = 0

ASTORINO Vision System Manual

26

red_led.on()

green_led.on()

blue_led.on()

pin9 = Pin('P9', Pin.OUT_PP, Pin.PULL_DOWN)

pin9.high()

sensor.reset()

sensor.set_pixformat(sensor.GRAYSCALE)

sensor.set_framesize(sensor.VGA)

sensor.set_windowing(window)

sensor.skip_frames(time = 2000)

sensor.set_auto_gain(True) # must be turned off for color

tracking

sensor.set_auto_whitebal(True) # must be turned off for color

tracking

lcd.init()

clock = time.clock()

UART 3

uart = UART(3, 500000)

while(True):

 #finding the object

 img = sensor.snapshot()

 img.lens_corr(fisheye_corr)

 isblob = 0;

 roi_set = (roi_val, roi_val, w_width - 2 * roi_val, w_hight - 2 *

roi_val)

 for blob in img.find_blobs([thresholds], roi = roi_set, pixels_thresh-

old=100, area_threshold=100, merge=True):

 # These values depend on the blob not being circular - otherwise

they will be shaky.

 if blob.elongation() > 0.5:

 img.draw_edges(blob.min_corners(), color=0)

 img.draw_line(blob.major_axis_line(), color=0)

 img.draw_line(blob.minor_axis_line(), color=0)

 # These values are stable all the time.

 img.draw_rectangle(blob.rect(), color=127)

 img.draw_cross(blob.cx(), blob.cy(), color=127)

 # Note - the blob rotation is unique to 0-180 only.

 img.draw_keypoints([(blob.cx(), blob.cy(), int(math.de-

grees(blob.rotation())))], size=40, color=127)

 isblob += 1

 #found object coordinates

 if isblob == 1:

 X_Location = blob.cx()

 Y_Location = blob.cy()

 else:

 X_Location = 0

 Y_Location = 0

 PC = [[X_Location], [Y_Location], [0], [1]]

 #calcualting the angle

 if isblob == 1:

ASTORINO Vision System Manual

27

 blob_corn = blob.min_corners()

 blob_corn = sorted(blob_corn)

 d1_blb = math.sqrt(math.pow((blob_corn[2][1] - blob_corn[3][1]),

2))

 d2_blb = math.sqrt(math.pow((blob_corn[2][0] - blob_corn[3][0]),

2) + math.pow((blob_corn[2][1]) - (blob_corn[3][1]), 2))

 if blob_corn[2][1] > blob_corn[3][1]:

 blob_ang = (math.pi - math.asin(d1_blb/d2_blb) + c_angle) *

180/math.pi

 else:

 blob_ang = (math.asin(d1_blb/d2_blb) + c_angle) * 180/math.pi

 else:

 blob_ang = 0

 while blob_ang > 90:

 blob_ang -= 90

 #transform camera coordinate to robot coordinate

 for i in range(len(H0_C)):

 for j in range(len(PC[i])):

 for k in range(len(PC)):

 P0[i][j] += H0_C[i][k] * PC[k][j] * scale

 #offset

 P0[0][0] -= off_x

 P0[1][0] -= off_y

 #clear data

 print(P0[0], P0[1])

 print(blob_ang)

 P0[0][0] = 0

 P0[1][0] = 0

 P0[2][0] = 0

 P0[3][0] = 0

ASTORINO Vision System Manual

28

Appendix C – cube find program code

import sensor, image, time, lcd, math

from pyb import LED

from pyb import UART

from pyb import Pin

##calibration

w_x = 170 #dimensions and location of the examined area (part of the cam-

era view: x coefficient, y coefficient, width, height)

w_y = 100

w_width = 346

w_hight = 260

fisheye_corr = 0.7 #camera fisheye correction

c_frm_px = [[18, 232],[334, 235],[330, 17],[24, 7]] #pixel coordinates of

physical points

r_frm_p = [[-135.4, 409.6],[-131.0, 203.7],[22.7, 197.6],[16.6,

408.9]]#physical coordinates of points

thresholds = (0, 55) #how gray (black) grayscale objects are to be de-

tected

off_x = 0 #offset (possible position correction in mm)

off_y = 0

off_ang = 0.09004

##

##########################

temp = 0;

for i in range(4):

 if r_frm_p[i][1] + r_frm_p[(i + 1)%4][1] < r_frm_p[temp][1] +

r_frm_p[(temp + 1)%4][1]:

 temp = i

pos_case = temp

H0_C = [[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]] #trans-

formation matrix

P0 = [[0], [0], [0], [0]] #result

point

R_z = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] #rota-

tion matrix

#scale mm/px

r_diff = math.sqrt(math.pow((r_frm_p[2][0] - r_frm_p[0][0]), 2) +

math.pow((r_frm_p[2][1] - r_frm_p[0][1]), 2))

c_diff = math.sqrt(math.pow((c_frm_px[2][0] - c_frm_px[0][0]), 2) +

math.pow((c_frm_px[2][1] - c_frm_px[0][1]), 2))

scale = r_diff/c_diff

#rotation r

d1_r = math.sqrt(math.pow((r_frm_p[1][1] - r_frm_p[2][1]), 2))

d2_r = math.sqrt(math.pow((r_frm_p[1][0] - r_frm_p[2][0]), 2) +

math.pow((r_frm_p[1][1]) - (r_frm_p[2][1]), 2))

ASTORINO Vision System Manual

29

r_angle = (math.asin(d1_r/d2_r))

#rotation c (based on pixel points)

d1_c = math.sqrt(math.pow((c_frm_px[1][1] - c_frm_px[2][1]), 2))

d2_c = math.sqrt(math.pow((c_frm_px[1][0] - c_frm_px[2][0]), 2) +

math.pow((c_frm_px[1][1]) - (c_frm_px[2][1]), 2))

c_angle = math.asin(d1_c/d2_c)

#angles sum

if pos_case == 1 or pos_case == 2:

 pos_case_ang = 0

else:

 pos_case_ang = 1

angle = c_angle + r_angle + (math.pi * pos_case_ang) - off_ang

#rotation 180 (relative to x)

R180 = [[1, 0, 0], [0, math.cos(math.pi), -math.sin(math.pi)], [0,

math.sin(math.pi), math.cos(math.pi)]]

#rotation matrix of camera arrays by angle

R_a = [[math.cos(angle), -math.sin(angle), 0], [math.sin(angle),

math.cos(angle), 0], [0, 0, 1]]

#rotation matrix

for i in range(len(R180)):

 for j in range(len(R_a[0])):

 for k in range(len(R_a)):

 R_z[i][j] += R180[i][k] * R_a[k][j]

#shift vector - finding the shift vector depending on the position case

x_ = ((c_frm_px[pos_case][1] + c_frm_px[(pos_case+1)%4][1])/2)

y_ = ((c_frm_px[pos_case][0] + c_frm_px[(pos_case+1)%4][0])/2)

d0_x = x_ * math.cos(math.pi/2 - angle) - y_ * math.sin(math.pi/2 - angle)

+ (r_frm_p[pos_case][0] + r_frm_p[(pos_case+1)%4][0])/(2 * scale)

d0_y = x_ * math.sin(math.pi/2 - angle) + y_ * math.cos(math.pi/2 - angle)

+ (r_frm_p[pos_case][1] + r_frm_p[(pos_case+1)%4][1])/(2 * scale)

d0_C = [d0_x, d0_y, 0, 1]

#H0_C matrix (rotation matrix and translation matrix in one)

for i in range(len(R_z)):

 for j in range(len(R_z[i])):

 H0_C[i][j] = R_z[i][j]

for i in range(len(d0_C)):

 H0_C[i][3] = d0_C[i]

###camera settings###

clock = time.clock()

r = (0,0,269,217)

window = (w_x,w_y,w_width,w_hight)

low_threshold = (30, 160)

uart = UART(3, 9600, timeout_char=1000)

angle = 0

red_led = LED(1)

green_led = LED(2)

blue_led = LED(3)

a = 0

ASTORINO Vision System Manual

30

red_led.on()

green_led.on()

blue_led.on()

pin9 = Pin('P9', Pin.OUT_PP, Pin.PULL_DOWN)

pin9.high()

sensor.reset()

sensor.set_pixformat(sensor.GRAYSCALE)

sensor.set_framesize(sensor.VGA)

sensor.set_windowing(window)

sensor.skip_frames(time = 2000)

sensor.set_auto_gain(True) # must be turned off for color

tracking

sensor.set_auto_whitebal(True) # must be turned off for color

tracking

lcd.init()

clock = time.clock()

UART 3

uart = UART(3, 115200)

while(True):

 clock.tick()

 if UART.any(uart) > 0:

 Data = uart.read(1)

 if ord(Data) == ord(trigger):

 #finding the object

 img = sensor.snapshot()

 img.lens_corr(fisheye_corr)

 isblob = 0;

 roi_set = (roi_val, roi_val, w_width - 2 * roi_val, w_hight -

2 * roi_val)

 for blob in img.find_blobs([thresholds], roi = roi_set, pix-

els_threshold=100, area_threshold=100, merge=True):

 # These values depend on the blob not being circular -

otherwise they will be shaky.

 if blob.elongation() > 0.5:

 img.draw_edges(blob.min_corners(), color=0)

 img.draw_line(blob.major_axis_line(), color=0)

 img.draw_line(blob.minor_axis_line(), color=0)

 # These values are stable all the time.

 img.draw_rectangle(blob.rect(), color=127)

 img.draw_cross(blob.cx(), blob.cy(), color=127)

 # Note - the blob rotation is unique to 0-180 only.

 img.draw_keypoints([(blob.cx(), blob.cy(), int(math.de-

grees(blob.rotation())))], size=40, color=127)

 isblob += 1

 #assign the coordinates

 if isblob == 1:

 X_Location = blob.cx()

 Y_Location = blob.cy()

 else:

 X_Location = 0

ASTORINO Vision System Manual

31

 Y_Location = 0

 PC = [[X_Location], [Y_Location], [0], [1]]

 #calculate the angle

 if isblob == 1:

 blob_corn = blob.min_corners()

 blob_corn = sorted(blob_corn)

 d1_blb = math.sqrt(math.pow((blob_corn[2][1] -

blob_corn[3][1]), 2))

 d2_blb = math.sqrt(math.pow((blob_corn[2][0] -

blob_corn[3][0]), 2) + math.pow((blob_corn[2][1]) - (blob_corn[3][1]), 2))

 if blob_corn[2][1] > blob_corn[3][1]:

 blob_ang = (math.pi - math.asin(d1_blb/d2_blb) + c_an-

gle) * 180/math.pi

 else:

 blob_ang = (math.asin(d1_blb/d2_blb) + c_angle) *

180/math.pi #kat w przliczeniu na stopnie

 else:

 blob_ang = 0

 while blob_ang > 90:

 blob_ang -= 90

 #transform camera to robot coordinates

 for i in range(len(H0_C)):

 for j in range(len(PC[i])):

 for k in range(len(PC)):

 P0[i][j] += H0_C[i][k] * PC[k][j] * scale

 #ewentualny offset

 P0[0][0] -= off_x

 P0[1][0] -= off_y

 #calc cordinates

 if isblob == 1:

 Pxstr = str(P0[0])[1:len(str(P0[0])) - 1]

 Pystr = str(P0[1])[1:len(str(P0[1])) - 1]

 Astr = str(blob_ang)

 else:

 Pxstr = "0"

 Pystr = "0"

 Astr = "0"

 uart.write(Pxstr)

 uart.write(separator1)

 uart.write(Pystr)

 uart.write(separator2)

 uart.write(Astr)

 uart.write(separator3)

 #clear data

 print(Pxstr, Pystr)

 print(blob_ang)

 P0[0][0] = 0

 P0[1][0] = 0

 P0[2][0] = 0

 P0[3][0] = 0

ASTORINO Vision System Manual

32

Appendix D – robot program code

.PROGRAM CUBE

 TOOL 1

 SPEED 100 MM/S ALWAYS

 HOME

 pick_height = 5

 ;P0 – reference orientation point over pick area

 ;P1 – cube pick position from cubes feeder

 ;P2 – position over cubes bin

 ;#P0 – cube drop position under camera

 SIGNAL 1

 SWAIT 1001 ;wait for user input

 PULSE 4,1

 LAPPRO P1, 50

 SPEED 40 MM/S

 LMOVE P1

 TWAIT 0.5

 CLOSEI

 TWAIT 0.5

 LDEPART 50

 JMOVE #P0

 OPENI

 HOME

 SEND "T" ;trigger the camera

 WHILE EXISTCOM == false DO

 twait 0.1

 END

 $temp = RECEIVE ;receive and decode the frame

 ;input frame X/Y/ANGLE/

 $temp2 = $decode($temp,"/")

 $temp3 = $decode($temp, "/")

 $temp4 = $decode($temp, "/")

 dataX = VAL($temp2)

 dataY = VAL($temp3)

 dataA = VAL($temp4)

 IF ((dataX <> 0) AND (dataY <> 0)) THEN

 POINT test = TRANS(dataX,dataY,pick_height,0,0,0)

 POINT\OAT pick = P0 ;reference orientation point

 POINT pick = pick + RZ(angle) ;adding angle of the cube

 LAPPRO pick, 40

 SPEED 40 MM/S

 LMOVE pick

 TWAIT 0.5

 CLOSEI

 TWAIT 0.5

 LDEPART 50

 JMOVE P2

 OPENI

 TWAIT 0.5

 ELSE

 PRINT "No object found"

 END

.END

