Y < VA
Robotics

Astorino
Vision System Manual

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

Preface

This manual describes the handling of the 6-axis robot “astorino"
Vision System option.

The ASTORINO is a learning robot specially developed for educational in-
stitutions. Pupils and students can use the ASTORINO to learn robot-as-
sisted automation of industrial processes in practice.

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

1. The "astorino" software included with the ASTORINO is licensed for use
with this robot only and may not be used, copied or distributed in any
other environment.

2. Kawasaki shall not be liable for any accidents, damages, and/or prob-
lems caused by improper use of the ASTORINO robot.

3. Kawasaki reserves the right to change, revise, or update this manual
without prior notice.

4. This manual may not be reprinted or copied in whole or in part without
prior written permission from Kawasaki.

5. Keep this manual in a safe place and within easy reach so that it can be
used at any time. If the manual is lost or seriously damaged, contact
Kawasaki.

Copyright © 2024 by KAWASAKI Robotics GmbH.

All rights reserved.

IT

Symbols

Items that require special attention in this manual are marked with the fol-
lowing symbols.

Ensure proper operation of the robot and prevent injury or property dam-
age by following the safety instructions in the boxes with these symbols.

Failure to observe the specified contents could

possibly result in injury or, in the worst case,
death.

.

[ATTENTION]

Identifies precautions regarding robot specifications,
handling, teaching, operation, and maintenance.

1. The accuracy and effectiveness of the diagrams,
procedures and explanations in this manual cannot
be confirmed with absolute certainty. Should any un-
explained problems occur, contact Kawasaki Robotics
GmbH at the above address.

2. To ensure that all work is performed safely, read and
understand this manual. In addition, refer to all applica-
ble laws, regulations, and related materials, as well as
the safety statements described in each chapter.

Prepare appropriate safety measures and procedures
for actual work.

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

Paraphrases

The following formatting rules are used in this manual:

e For a particular keystroke, the respective key is enclosed in angle
brackets, e.g. <F1> or <Enter>.

e For the button of a dialog box or the toolbar, the button name is
enclosed in square brackets, e.g. [Ok] or [Reset].

e Selectable fields are marked with a square box 0.
If selected a check mark is shown inside the symbol 4.

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

List of contents

o = 7= o = I
1372 1.2 1o] £ PP 1
Y= 0] a] = [T R 2
1Y o] ol oY = o | = PP 3
1 Nomenclature in this Manual........ccoiiiii 4
2 Overview Of ASTORINO ..cuuiiiiiiii i et e e e e e e e e eaa e e e eneaeanenens 4
3 Technical sSpeCifiCalions. . cuiiii i e e 5
4 Conveyor package CoONLENTS. .. it 6
ST I T 0 0 7= 0 =] o 7
(ST o o 1= AV A o V=T Y 1N 8
/2 4 =] =] 1 =1 of (o] o PP 8
/2% R -1 0 o 1= = W elo T | =T o o P 9
Vision system — general informationo 10

9 astorino — openNMV eXamPle @PP «iviiiiiiiiiiiii i 12
1 A -1 0 o V=T o= [o] oo =1 o 1= P 12

1 TP 0] o o ull o] e Y] =1 o [P 12
10 Calibration INSErUCKIONS ... e e ee s 13
10.1 Program modificationsc.ciiiiiiiii i 13
10.1.1 Code CoNfIGUIrAtioN ...vie e 13
10.2 CalibratioN. .. 15
10.2.1 2o T 1o) S PP 15
10.2.2 PO NE 2. 16
10.2.3 20} 1 0 P 17
10.2.4 PO NE it e 18
10.3 Input the saved positions into the program ... 19
10.4 Serial comMmMUNICAtIONeei e 19
10.5 QUICK Program SEEUD ..uviiiiiiiii it 20
10.6 Algorithm desCriprioN ... e 20
10.7 Il iTaliw=3leToTo R o] g'eTe | =] o o AP 20
10.8 Save the program in the camera ... 21
11 Manufacturer iINformMation ..o e 22
Appendix A — Camera stand assembIY ..oviieiiiii e 23
Appendix B — calibration program COAEiiviiiiiiiiiiii i aae e 24
Appendix C — cube find program COOEuiiuiiiiiniiiiii i e aansareaneaneanes 28
Appendix D — robot program COAE ...uiiiiiii i i i e e 32

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

1 Nomenclature in this manual

The author of the manual tries to use generally valid terminology while
achieving the greatest possible logical sense. Unfortunately, it must be
noted that the terminology is reversed depending on the point of view
when considering one and the same topic. Also it is to be stated that in the
course of the computer and software history terminologies developed in dif-
ferent way. One will find therefore in a modern manual no terminologies,
which always satisfy 100% each expert opinion.

2 Overview of ASTORINO

The ASTORINO is a 6-axis learning robot developed specifically for educa-
tional institutions such as schools and universities. The robot design is
based to be 3D printed with PET-G filament. Damaged parts can be repro-
duced by the user using a compatible 3D printer.

Programming and control of the robot is done by the "astorino" software.

The latest software version and 3D files can be downloaded from the KA-
WASAKI ROBOTICS FTP server:

https://ftp.kawasakirobot.de/Software/Astorino/

Just like Kawasaki’s industrial Robots the ASTORINO is programmed using
AS language. Providing transferable programming skills from the class-
room to real industrial applications.

https://ftp.kawasakirobot.de/Software/Astorino/

ASTORINO Vision System Manual

B << Kawasaki

Powering your potential

3

Technical specifications

Characteristics

Astorino Conveyor

Temperature 15-35°C
Working environment
Humidity 35-60%
Processor ARM® 32-bit Cortex®-M7 CPU
RAM 33MB
Grayscale
Supported Image Formats RGB565
JPEG
2952x1944

Max. Supported Resolutions

25-50 FPS on QVGA (320x240)

Lens Info

Focal Length: 2.8mm

Aperture: F2.0

Format: 1/3"

HFOV = 70.8°, VFOV = 55.6°
Mount: M12*0.5

IR Cut Filter: 650nm (removable)

Power supply

5V - Camera
12V - Light

Power Consumption

Idle: 140mA @ 3.3V
Active: 230mA @ 3.3V
Light - 300 mA @ 12V

Programming language

MicroPython

Programming interface MicroUSB
Programming software OpenMV IDE
Material PET-G
Colour Black
Communication UART (Serial)
Weight 50g
TensorFlow lite for microcontrollers
support

Possible applications

Frame differencing

Colour tracking

Marker tracking

Face detection

Eye-tracking

Person detection

Optical flow

QR code detection/Decoding
Data matrix detection/Decoding
Linear barcode decoding
April Tag tracking

Line detection

Circle detection

Rectangle detection

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

4 Conveyor package contents

Item | quantity Name
1 3 2020
2 2 Camera mount
3 3 Angle brackets
4 2 12 V Power Supply
5 1 Micro USB cable

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

5 Dimensions

(it

116,25

(250)

220,00

500,00
=] :]

TipS

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

6 openMV - overview

The OpenMV Cam is a small, low power, microcontroller board which allows
you to easily implement applications using machine vision in the real-world.
You program the OpenMV Cam in high level Python scripts (courtesy of the
MicroPython Operating System) instead of C/C++. This makes it easier to
deal with the complex outputs of machine vision algorithms and working
with high level data structures. But, you still have total control over your
OpenMV Cam. For more info, openMV IDE operation manual and MicroPy-
thon please see the on-line documentation.

https://docs.openmyv.io/openmvcam/tutorial/index.html

7 Installation

To use openMV camera please download and install newest OpenMV IDE
from this webside:

https://openmv.io/pages/download

%% helloworld 1.py - OpenMV IDE - [m} X
File Edit Tools Window Help

helloworld 1.py* < Line: 18, Col: 34 Frame Buffer Zoom Disable

Histogram LAB Color Space

(b))
nal | &1 \ Tt f Sy o i h
6C 9

SE) 15 30 45
Mean 76 Median 86 Mode 83
Min 11 Max 100 Q

B

W-.
) E
2 B
n,

, 33, 47, 48, 842, 116, 50, 0.9409514, 1, 1)

80 -40 0
Median -17 Mode -18
Max 81 1Q

-120
Mean 7 Median -5 Mode o StDev
v Min -100 Max 69 Q S uQ

Search Results Serial Terminal Firmware Version: 2.0.0 - [latest] Serial Port: COMS Drive: It/ FPS: 15.2

Please also see Quickref to get familiar with the system

https://docs.openmyv.io/openmvcam/quickref.html

https://docs.openmv.io/openmvcam/tutorial/index.html
https://openmv.io/pages/download
https://docs.openmv.io/openmvcam/quickref.html

ASTORINO Vision System Manual

B << Kawasaki

Powering your potential

7.1 Camera connection

USB - programming

LED power

Power/Data

Connect LED power cable, micro USB for programming and Power/Data

cable to astorino Serial port.

7

>

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

8 Vision system - general information

OpenMV camera can find on the pictures different shapes or colour blobs.

Corners finding Colour blobs finding

There are many example project to help start with this system with differ-
ent detection features.

Position of this objects is returned in camera coordinate system and in pix-
els.

Robot BASE

coordinate system

Camera

coordinate system

10

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

Because the coordinate systems and scales are different robot cannot oper-
ate on camera raw data, we need to transform the object position from pix-
els to mm relative to the robot base.

For that we need to define a rotation matrix [4x4] and scale factor which
will transform object position to BASE coordinate system and also scale pix-
els to millimetres.

R1 R4 R7 Tx

R2 R5 R8 Ty
R3 R6 R9 Tz

0 0 o0 1

H =

Where R1..R9 are describing the change in rotation and Tx..Tz are describ-
ing the change in position.

Example app already is using this method.

11

B Kawasaki
Powering your potential

ASTORINO Vision System Manual
9 astorino - openMV example app

Astorino example Vision system app is a pick and place demo.

The flow of this demo is like this:

e Robot picks a cube from a cube feeder,

e Places it under the camera,

e Camera takes the picture and finds the cubes,

e Cube position is transmitted to the robot

e Robot picks the cube and places it in the red bucket.

9.1 Camera programs
There are two vision system programs:

e Calibration - used to set a calibration data (H matrix and scale)
e Finding objects - used with robot program to pick cubes)

9.2 Robot program
Ther is one example robot program which reads data from a camera,
creates a destination point and goes to taht point to pick the cube.

12

B < Kawasaki
Powering your potential

ASTORINO Vision System Manual

10 Calibration instructions

The openMV camera detects objects in its field of view and converts the co-
ordinates of their center, in pixels, to coordinates in the robot's working field
(in millimeters).

10.1 Program modifications

10.1.1 Code configuration

Depending on the configuration of the camera settings, the exposure of the
object and external factors, modify the following part of the code:

For easier selection of the following parameters, use the calibration program,
which continuously displays the coordinates of detected objects and allows
viewing the camera image.

e Ww_x - x-coordinate (in pixels) specifying the upper left corner of the
selected image analysis area from the entire camera view.

e w_y - y-coordinate (in pixels) specifying the upper left corner of the
selected image analysis area from the entire camera view.

e w_width - the width of the analyzed area (in pixels) starting from w_x.

e w_hight - the height of the analyzed area (in pixels) starting from w_y.

e fisheye corr — The fisheye correction of the camera should be selected
according to the height of its mounting.

e C_frm_px - from the camera view, read the coordinates of the
boundary points of the work area in pixels (for example, by copying
the camera view into a graphics program or by clicking on the corre-
sponding pixels in the view in the OpenMV application). Enter the co-
ordinates in the following order: start with the leftmost point (value

13

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

in pixels) in the camera view, enter subsequent points in counter-
clockwise order.

Histogram

Coordinates of the selected pixel displayed under the camera view

e r_frm_p - reaching with the robot to the successive boundary points
(the same as in the above point) of the working area, detected by the
camera, enter the x and y coordinates read from the astorino applica-
tion (JOG tab: X, Y). Enter the coordinates in the following order: start
from the leftmost point in the camera view, enter the subsequent
points in counterclockwise order (the same as in the above point).

It is important that the ¢_frm_px and r_frm_p coordinates are entered in
the same order!

1

c_frm_px: (x1, y1) [px]
r_frm_p: (x1, y1) [mm]

4,
c_frm_px: (x4, y4) [px]
r_frm_p: (x4, y4) [mm]

2

c_frm_px: (x2, y2) [px]
r_frm_p: (x2, y2) [mm]

3.
c_frm_px: (x3, y3) [px]
r_frm_p: (x3, y3) [mm]

14

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

10.2 Calibration
Please run calibration program on OpenMV IDE.

10.2.1 Point 1

Frame Buffer Record Zoom Disable

}] y 3

Histogram RGB Color Space
Res (w:316, h:238) - Point (x:15, y:227)

Current Pasition
Tool |2 v~ @oar (O rPY @
Z [mm]
| -01484|
T
179,979 | 165,667
T2 %] T3 [7]
3.:”1m| | ;.'8,840| | 68,618|
T4 [%] 1T [%] 1T [%]
| 38;??9| | -63,54;'| | -19:?09|
IT7 [mm/<] Conveyor 1: Conveyor z:
| m,ono| | -o,nzo| | o,non|

Move robot to the corner and save the position.

15

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

10.2.2 Point 2

Frame Buffer

E

RGB Color Space

Res (w:316, h:238) - Point (x:300, y:230)
e

Zoom Disable

Current Position
Tool. 2 v @ oar (O RpY e
% [mm] Y [mm Z [mm]
| -202;234| | 255,132 | -0,208|
8] AT ™
| 1,922| | 1;9,946| | -1;.'8,0;.'5|
IT1[#] 1Tz % 1Tz [#]
| 53,508| | 5:";:":"0| | 11;';43¢|
T4 [7] s [7] IT6 [7]
| 53,607] | 87152 | 3,913
IT7 [mm/?] Conveyor 1: Conveyor 2:
| m,ono| | -0,020| | n,ono|

Move robot to the corner and save the position.

16

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

10.2.3 Point 3

Frame Buffer Record Zoom Disable

RGB Color Space
Res (w:316, h:238) - Poirit (x:307, y:28)

Current Position

Tool: 2™ @ oaT

() rPY

N7

Z [mm]
| -0,581|
™
179,936 | 174,935
T2 7] Tz [°1
30730 | 53,494 | 139,943
T4 7] ITs[7] IT6 [7]
| 311435| | -101;515| | 6;89;'|
7 [mm/?] Conveyor 1: Conveyor z:
| m,ono| | -n,ozn| | n,ono|

Move robot to the corner and save the position.

17

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

10.2.4 Point 4

Frame Buffer Record Zoom Disable

Histogram RGB Color Space
Res (w:316, h:238) - Point (x:22, y:10)

Current Position
Tool. 2 ¥ @oar (O rey @
R Z [mm]
[
T
1;'9:940| | 16?,149|
1Tz [#] T3 [7]
.1.6;}'95| | 6;-',653| | 92,288|
15 [7] IT6 [7]
1;.',81;.r| | -;n:u,818| | -6,083|
IT7 [mm/?] Conveyor 1: Conveyor 2:
| mlono| | -0,020| | o,non|

Move robot to the corner and save the position.

18

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

10.3 Input the saved positions into the program

e thresholds - determines how dark (black) in a grayscale detected ob-
ject is. It uses the LAB color space (thresholds = [Lmin, Lmax, Amin,
Amax, Bmin, Bmax]). When detecting objects in grayscale, you only
need to set the first 2 parameters.

e 0off_x - possible offset in the x-direction of the detected points (in mil-
limeters).

e Off_y - possible offset in the y-direction of the detected points (in mil-
limeters).

e Off_ang - possible offset of the rotation angle of the camera coordinate
system and the robot workspace (in radians).

10.4 Serial communication

The following parameters refer to the configuration of communication be-
tween the camera and the robot:

e trigger — determines what character the camera expects. If the re-
ceived sign is the same as the trigger variable, the camera will send
back the calculated coordinates.

e separatorl - determines what character will separate the sent X coor-
dinate from the Y coordinate.

e separator2 - determines what character will separate the sent X coor-
dinate from the angle of rotation - A.

e separator3 - determines what character will appear at the end of the
sent batch of data.

For the above example, after receiving the "T" sign, the data sent will take
the form: X/Y/A/

19

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

10.5 Quick program setup

1. Mount the camera in the desired location so that the working area can
be seen perpendicularly.

2. Turn on the camera and run the calibration program.

3. set the w_x, w_y, w_width and w_hight parameters so that the pre-
view shows the entire working area dedicated to the camera.

4. Set the fisheye corr parameter to best correct the image distortion
caused by the camera's fisheye.

5. enter the appropriate coordinates in the camera view c_frm_px [px]
and the manipulator workspace r_frm_p [mm] (remember the correct
order!) as described in the above section.

6. Set the thresholds parameter so that your objects are detected
properly.

7. Based on the results obtained, make corrections with the parameters
off_x, off_y, off_ang.

8. Configure the parameters for communication by setting trigger, sepa-
ratorl, separator2 and separator3 to the desired characters.

10.6 Algorithm description

Based on the entered parameters (section 1.1), the program calculates suc-
cessively:
e scale - the ratio of millimeters in the workspace to the pixels visible in
the camera image,
e the angle of rotation of the camera in relation to the robot's workspace,
e the corresponding sum angle.
Then the rotation matrix is created and the displacement vector is calculated.
The results obtained in this way allow to create a transformation matrix.

10.7 Infinite loop program

1. The program checks the received data via UART. If the received data
is as expected, an attempt is made to detect the object.

2. If the object is detected, the coordinates of its occurrence (pixels) are
collected.

3. The coordinates are converted from pixels to millimeters (using a
transformation matrix).

4. If the object is not detected, the camera will send back the coordinates
(X=0, Y=0).
The converted coordinates are sent via UART.

20

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual

10.8 Save the program in the camera

After successful calibration, the applied program can be saved to the cam-
era's memory so that it runs when the camera is turned on. To do this,
expand the "tools" tab from the ribbon of the OpenMV IDE application and
select "Save open script to OpenMV Cam (as main.py)".

File Edit Qi3 Window Help

Run Bootloader (Load Firmware) Ctrl+5Shift+L
Erase Onboard Data Flash Ctrl+5Shift+E

Open OpenMV Cam Drive folder

Configure OpenMV Cam settings file

Save open script to OpenMV Cam (as main.py)
Reset OpenMV Cam

Open Terminal
Machine Vision
Video Tools

Dataset Editor

Options...

The program saved in this way will start automatically when the camera is
connected to the power supply (from a computer via USB port or using an
external power supply).

21

B Kawasaki
Powering your potential

ASTORINO Vision System Manual

11 Manufacturer information

For further questions, contact Kawasaki Robotics support.

Contact:

Kawasaki Robotics GmbH
tech-support@kawasakirobot.de
+49 (0) 2131 - 3426 - 1310

Kawasaki Robot
Vision System Manual

2024-12: 3rd Edition

Publication: KAWASAKI Robotics GmbH

Copyright © 2024 by KAWASAKI Robotics GmbH.
All rights reserved.

22

B << Kawasaki
Powering your potential

ASTORINO Vision System Manual
Appendix A - Camera stand assembly

Connect together two 2020x250mm profiles with T-NUT butt joint brackets,
Connect angle brackets to profiles with M5 screws,

Connect 2020x200mm to other profiles with angle bracket, t-nuts and M5
screws,

Install camera to the 2020x200mm using delivered 3D printed angle brack-
ets, T-nuts, M5 screws and M3 screws screws with nuts,

1
v

23

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

Appendix B - calibration program code

import sensor, image, time, lcd, math
from pyb import LED
from pyb import UART
from pyb import Pin

##calibration

w x = 170 #dimensions and location of the examined area (part of the cam-
era view: x coefficient, y coefficient, width, height)

w y = 100

w_width = 346
w_hight = 260

fisheye corr = 0.7 #camera fisheye correction

c frm px = [[18, 2321,[334, 2351,[330, 171,[24, 71] #pixel coordinates of
physical points

r frm p = [[-135.4, 409.6]1,[-131.0, 203.71,[22.7, 197.61,[16.6,
408.9]]1#physical coordinates of points

thresholds = (0, 55) #how gray (black) grayscale objects are to be de-
tected

off x = 0 #offset (possible position correction in mm)
off y =0
off ang = 0.09004

igsadsddssssasdddaaddddddsaadsdddsssaasdddssaadddiaaadadddaaaaaddRnRndndidi
igsaasddssaassdiaaaaadssi

temp = 07
for i in range(4):
if r frm p[i]l[1] + r frm p[(i + 1)%4][1] < r frm p[temp] [1] +
r frm p[(temp + 1)%4]1[1]:
temp = 1

pos_case = temp

Wo_c¢ =710, o0, o, 01,10, 0, 0, 01,10, 0, 0, 01,[0, O, 0, 011 #trans-
formation matrix

PO = [[0], [O], [O]1, [O]1] #result
point

R_Z = [[Ol Ol O]l [Or Or O]r [Or Or O]] #rota-

tion matrix

#scale mm/px

r diff = math.sqrt(math.pow((r frm p[2][0] - r frm p[0][0]), 2) +
math.pow((r_ frm p[2][1] - r frm p[0]1[1]1), 2))

c diff = math.sgrt(math.pow((c_frm px[2]1[0] - ¢ frm px[0][0]), 2) +
math.pow((c_frm px[2][1] - c frm px[0][1]1), 2))

scale = r diff/c diff

#rotation r

dl r = math.sgrt (math.pow((r frm p[1]1[1] - r frm p[2][1]), 2))
d2 r = math.sqgrt (math.pow((r frm p[1]1[0] - r frm p[2][0]), 2) +
math.pow ((r_frm p[1][1]) - (r_frm p[2]1[1]), 2))

24

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

r angle = (math.asin(dl_r/d2 r))

#rotation c¢ (based on pixel points)

dl ¢ = math.sgrt(math.pow((c_frm px[1]1[1] - c frm px[2][1]), 2))
d2 ¢ = math.sqgrt (math.pow((c_ frm px[1][0] - c frm px[2][0]), 2) +
math.pow((c_frm px[1]1[1]) - (c_frm px[2][1]), 2))

c_angle = math.asin(dl_c/d2 c)

#angles sum

if pos case == or pos_case ==
pos_case _ang = 0

else:
pos_case ang = 1

angle = ¢ _angle + r angle + (math.pi * pos case ang) - off ang
#frotation 180 (relative to x)

R180 = [[1, O, 0], [0, math.cos(math.pi), -math.sin(math.pi) 1, [0,
math.sin(math.pi), math.cos(math.pi)]]

#rotation matrix of camera arrays by angle
R a = [[math.cos(angle), -math.sin(angle), 0], [math.sin(angle),
math.cos (angle), 01, [0, O, 111

#frotation matrix
for i in range(len(R180)):
for j in range(len(R a[0])):
for k in range(len(R a)):
R z[i][3j] += R180[1]1[k] * R_al[k][J]

#shift vector - finding the shift vector depending on the position case
x = ((c_frm px[pos case][1l] + c_frm_px[(pos_case+1)%4][1])/2)
y = ((c_frm px[pos case][0] + c_frm px[(pos case+1)%4]1[0])/2)

d0_x = x_ * math.cos(math.pi/2 - angle) - y * math.sin(math.pi/2 - angle)
+ (r_frm p[pos case]l[0] + r frm p[(pos case+1)%4][0]1)/(2 * scale)
d0_y = x_ * math.sin(math.pi/2 - angle) + y * math.cos(math.pi/2 - angle)
+ (r_frm p[pos casel[l] + r frm p[(pos case+1)%4][1]1)/(2 * scale)

do_C = [d0_x, dO_y, 0, 1]

#HO C matrix (rotation matrix and translation matrix in one)
for i in range(len(R z)):
for j in range(len(R z[i])):
HO C[i]1[3] = R_z[i][7]
for i in range(len(d0 C)):
HO C[i]1[3] = d0_CI[1i]

###camera settings###

clock = time.clock()

r = (0,0,269,217)

window = (w_x,w y,w width,w hight)

low threshold = (30, 160)
uart = UART (3, 9600, timeout char=1000)

angle = 0

red led = LED(1)
green led = LED(2)
blue led = LED(3)
a =20

25

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

red led.on()
green led.on()
blue led.on()

pin9 = Pin('P9', Pin.OUT PP, Pin.PULL_DOWN)
pinS.high()

sensor.reset ()
sensor.set pixformat (sensor.GRAYSCALE)
sensor.set framesize(sensor.VGA)
sensor.set windowing(window)

sensor.skip frames(time = 2000)

sensor.set auto gain(True) # must be turned off for color
tracking

sensor.set auto whitebal (True) # must be turned off for color
tracking

led.init ()

clock = time.clock()

UART 3
uart = UART (3, 500000)

while (True) :

#finding the object

img = sensor.snapshot ()

img.lens corr(fisheye corr)

isblob = 0;

roi set = (roi val, roi val, w width - 2 * roi val, w_hight - 2 *
roi val)

for blob in img.find blobs([thresholds], roi = roi set, pixels thresh-
01d=100, area_ threshold=100, merge=True):

These values depend on the blob not being circular - otherwise
they will be shaky.
if blob.elongation() > 0.5:
img.draw_edges(blob.min corners(), color=0)
img.draw line(blob.major axis line(), color=0)
img.draw_line(blob.minor axis line(), color=0)

These values are stable all the time.
img.draw rectangle(blob.rect(), color=127)
img.draw cross(blob.cx(), blob.cy(), color=127)

Note - the blob rotation is unique to 0-180 only.

img.draw_keypoints([(blob.cx(), blob.cy(), int(math.de-
grees (blob.rotation())))], size=40, color=127)

isblob += 1

#found object coordinates
if isblob ==
X Location blob.cx ()
Y Location = blob.cy()
else:
X Location 0
Y Location = 0
PC = [[X Location], [Y Location], [0], [11]]

#calcualting the angle
if isblob ==

26

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

2))

blob corn = blob.min corners()
blob corn = sorted(blob corn)
dl blb = math.sgrt(math.pow((blob corn[2][1] - blob corn[3]1[1]),

d2 blb = math.sqgrt(math.pow((blob corn[2][0] - blob corn[3][0]),

2) + math.pow((blob corn[2][1]) - (blob corn[31[1]1), 2))

if blob _corn[2][1] > blob corn[3][1]:
blob ang = (math.pi - math.asin(dl blb/d2 blb) + c_angle) *

180/math.pi

else:
blob ang = (math.asin(dl blb/d2 blb) + c_angle) * 180/math.pi
else:
blob ang = 0

while blob ang > 90:
blob _ang -= 90

#transform camera coordinate to robot coordinate
for i in range(len(HO C)):
for j in range(len(PC[i])):
for k in range(len(PC)):
PO[i]1[j] += HO C[i1[k] * PC[k][]J] * scale

#offset
PO[0][0] -= off x
PO[1][0] -= off y

#clear data
print (PO[0], PO[1])
print(blob_ang)

PO[O][0] = O
PO[1][0] = O
PO[2][0] = O
PO[3]1[0] = O

27

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

Appendix C - cube find program code

import sensor, image, time, lcd, math
from pyb import LED
from pyb import UART
from pyb import Pin

##calibration

w x = 170 #dimensions and location of the examined area (part of the cam-
era view: x coefficient, y coefficient, width, height)

w y = 100

w_width = 346
w_hight = 260

fisheye corr = 0.7 #camera fisheye correction

c frm px = [[18, 2321,[334, 2351,[330, 171,[24, 71] #pixel coordinates of
physical points

r frm p = [[-135.4, 409.6]1,[-131.0, 203.71,[22.7, 197.61,[16.6,
408.9]]1#physical coordinates of points

thresholds = (0, 55) #how gray (black) grayscale objects are to be de-
tected

off x = 0 #offset (possible position correction in mm)
off y =0
off ang = 0.09004

igsadsddssssasdddaaddddddsaadsdddsssaasdddssaadddiaaadadddaaaaaddRnRndndidi
igsaasddssaassdiaaaaadssi

temp = 07
for i in range(4):
if r frm p[i]l[1] + r frm p[(i + 1)%4][1] < r frm p[temp] [1] +
r frm p[(temp + 1)%4]1[1]:
temp = 1

pos_case = temp

Wo_c¢ =710, o0, o, 01,10, 0, 0, 01,10, 0, 0, 01,[0, O, 0, 011 #trans-
formation matrix

PO = [[0], [O], [O]1, [O]1] #result
point

R_Z = [[Ol Ol O]l [Or Or O]r [Or Or O]] #rota-

tion matrix

#scale mm/px

r diff = math.sqrt(math.pow((r frm p[2][0] - r frm p[0][0]), 2) +
math.pow((r_ frm p[2][1] - r frm p[0]1[1]1), 2))

c diff = math.sgrt(math.pow((c_frm px[2]1[0] - ¢ frm px[0][0]), 2) +
math.pow((c_frm px[2][1] - c frm px[0][1]1), 2))

scale = r diff/c diff

#rotation r

dl r = math.sgrt (math.pow((r frm p[1]1[1] - r frm p[2][1]), 2))
d2 r = math.sqgrt (math.pow((r frm p[1]1[0] - r frm p[2][0]), 2) +
math.pow ((r_frm p[1][1]) - (r_frm p[2]1[1]), 2))

28

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

r angle = (math.asin(dl_r/d2 r))

#rotation c¢ (based on pixel points)

dl ¢ = math.sgrt(math.pow((c_frm px[1]1[1] - c frm px[2][1]), 2))
d2 ¢ = math.sqgrt (math.pow((c_ frm px[1][0] - c frm px[2][0]), 2) +
math.pow((c_frm px[1]1[1]) - (c_frm px[2][1]), 2))

c_angle = math.asin(dl_c/d2 c)

#angles sum

if pos case == or pos_case ==
pos_case _ang = 0

else:
pos_case ang = 1

angle = ¢ _angle + r angle + (math.pi * pos case ang) - off ang
#frotation 180 (relative to x)

R180 = [[1, O, 0], [0, math.cos(math.pi), -math.sin(math.pi) 1, [0,
math.sin(math.pi), math.cos(math.pi)]]

#rotation matrix of camera arrays by angle
R a = [[math.cos(angle), -math.sin(angle), 0], [math.sin(angle),
math.cos (angle), 01, [0, O, 111

#frotation matrix
for i in range(len(R180)):
for j in range(len(R a[0])):
for k in range(len(R a)):
R z[i][3j] += R180[1]1[k] * R_al[k][J]

#shift vector - finding the shift vector depending on the position case
x = ((c_frm px[pos case][1l] + c_frm_px[(pos_case+1)%4][1])/2)
y = ((c_frm px[pos case][0] + c_frm px[(pos case+1)%4]1[0])/2)

d0_x = x_ * math.cos(math.pi/2 - angle) - y * math.sin(math.pi/2 - angle)
+ (r_frm p[pos case]l[0] + r frm p[(pos case+1)%4][0]1)/(2 * scale)
d0_y = x_ * math.sin(math.pi/2 - angle) + y * math.cos(math.pi/2 - angle)
+ (r_frm p[pos casel[l] + r frm p[(pos case+1)%4][1]1)/(2 * scale)

do_C = [d0_x, dO_y, 0, 1]

#HO C matrix (rotation matrix and translation matrix in one)
for i in range(len(R z)):
for j in range(len(R z[i])):
HO C[i]1[3] = R_z[i][7]
for i in range(len(d0 C)):
HO C[i]1[3] = d0_CI[1i]

###camera settings###

clock = time.clock()

r = (0,0,269,217)

window = (w_x,w y,w width,w hight)

low threshold = (30, 160)
uart = UART (3, 9600, timeout char=1000)

angle = 0

red led = LED(1)
green led = LED(2)
blue led = LED(3)
a =20

29

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

red led.on()
green led.on()
blue led.on()

pin9 = Pin('P9', Pin.OUT PP, Pin.PULL_DOWN)
pinS.high()

sensor.reset ()
sensor.set pixformat (sensor.GRAYSCALE)
sensor.set framesize(sensor.VGA)
sensor.set windowing(window)

sensor.skip frames(time = 2000)

sensor.set auto gain(True) # must be turned off for color
tracking

sensor.set auto whitebal (True) # must be turned off for color
tracking

led.init ()

clock = time.clock()

UART 3
uart = UART (3, 115200)

while (True) :

clock.tick()
if UART.any(uart) > O:
Data = uart.read(l)
if ord(Data) == ord(trigger):

#finding the object

img = sensor.snapshot ()

img.lens corr(fisheye corr)

isblob = 0;

roi set = (roi val, roi val, w width - 2 * roi val, w_hight -
2 * roi val)

for blob in img.find blobs([thresholds], roi = roi set, pix-
els threshold=100, area threshold=100, merge=True):

These values depend on the blob not being circular -
otherwise they will be shaky.
if blob.elongation() > 0.5:
img.draw edges(blob.min corners(), color=0)
img.draw line(blob.major axis line(), color=0)
img.draw_line(blob.minor axis line(), color=0)

These values are stable all the time.
img.draw rectangle(blob.rect(), color=127)
img.draw cross(blob.cx(), blob.cy(), color=127)

Note - the blob rotation is unique to 0-180 only.

img.draw_keypoints([(blob.cx(), blob.cy(), int(math.de-
grees (blob.rotation())))], size=40, color=127)

isblob += 1

fassign the coordinates
if isblob ==

X Location = blob.cx()

Y Location = blob.cy()
else:

X Location = 0

30

B << Kawasaki

Powering your potential

ASTORINO Vision System Manual

Y Location = 0
PC = [[X Location], [Y Location], [0], [11]1]

#calculate the angle
if isblob ==
blob corn = blob.min corners()
blob corn = sorted(blob corn)
dl blb = math.sqgrt(math.pow((blob corn[2][1] -
blob corn[31[1]1), 2))
d2 blb = math.sqgrt(math.pow((blob corn[2][0] -
blob corn[3]1[0]), 2) + math.pow((blob corn[2][1]) - (blob corn[3][1]), 2))
if blob _corn[2][1] > blob corn[3][1]:
blob ang = (math.pi - math.asin(dl blb/d2 blb) + c_an-
gle) * 180/math.pi
else:
blob ang = (math.asin(dl blb/d2 blb) + c_angle) *
180/math.pi #kat w przliczeniu na stopnie
else:
blob ang = 0

while blob ang > 90:
blob _ang -= 90

#transform camera to robot coordinates
for i in range(len(HO C)):
for j in range(len(PC[i])):
for k in range(len(PC)):
PO[1i1[3] += HO C[i]l[k] * PC[k]I[j] * scale

fewentualny offset
PO[0][0] -= off x
PO[1]1[0] -= off y

#calc cordinates

if isblob == 1:
Pxstr = str(PO[0])[1l:1len(stxr(PO[0])) - 1]
Pystr = str(PO[1])[l:1len(str(PO[1])) - 1]
Astr = str(blob ang)

else:
Pxstr = "0"
Pystr = "0"
Astr = "0O"

uart.write (Pxstr)
uart.write (separatorl)
uart.write (Pystr)
uart.write (separator?2)
uart.write (Astr)
uart.write (separator3)

#clear data
print (Pxstr, Pystr)
print(blob ang)

PO[O][0] = O
PO[1][0] = O
PO[2][0] = O
PO[3]1[0] = O

31

B Kawasaki

Powering your potential

ASTORINO Vision System Manual

Appendix D - robot program code

.PROGRAM CUBE

TOOL 1

SPEED 100 MM/S ALWAYS

HOME

pick height = 5

;PO — reference orientation point over pick area
;P1 — cube pick position from cubes feeder
;P2 — position over cubes bin

;#P0 — cube drop position under camera
SIGNAL 1

SWAIT 1001 ;wait for user input

PULSE 4,1

LAPPRO P1, 50

SPEED 40 MM/S

LMOVE Pl

TWAIT 0.5

CLOSEI

TWAIT 0.5

LDEPART 50

JMOVE #PO

OPENTI

HOME

SEND "T" ;trigger the camera

WHILE EXISTCOM == false DO
twait 0.1

END

Stemp = RECEIVE ;receive and decode the frame

;input frame X/Y/ANGLE/

Stemp?2 = $decode (Stemp, "/™M)

Stemp3 = $decode (Stemp, "/')

Stemp4 = $decode (Stemp, "/')
dataX = VAL (Stemp2)
dataY = VAL (Stemp3)
dataA = VAL (Stempd)

IF ((dataX <> 0) AND (dataY <> 0)) THEN
POINT test = TRANS (dataX,data¥,pick height,0,0,0)
POINT\OAT pick = PO ;reference orientation point
POINT pick = pick + RZ(angle) ;adding angle of the cube
LAPPRO pick, 40
SPEED 40 MM/S
LMOVE pick
TWAIT 0.5
CLOSEI
TWAIT 0.5
LDEPART 50
JMOVE P2
OPENTI
TWAIT 0.5

ELSE
PRINT '"No object found”

END

.END

32

