

ASTORINO
C# API Manual

ASTORINO

09.2025-2(EN)

ASTORINO C# API

I

Preface

This manual describes the C# API of the 6-axis robot “astorino"

The ASTORINO is a learning robot specially developed for educational insti-

tutions. Pupils and students can use the ASTORINO to learn robot-assisted

automation of industrial processes in practice.

This is an original documents and is not translated.

ASTORINO C# API

II

1. The "astorino" software included with the ASTORINO is licensed for use

with this robot only and may not be used, copied or distributed in any

other environment.

2. Kawasaki shall not be liable for any accidents, damages, and/or prob-

lems caused by improper use of the ASTORINO robot.

3. Kawasaki reserves the right to change, revise, or update this manual

without prior notice.

4. This manual may not be reprinted or copied in whole or in part without

prior written permission from Kawasaki.

5. Keep this manual in a safe place and within easy reach so that it can be

used at any time. If the manual is lost or seriously damaged, contact

Kawasaki.

Copyright © 2025 by KAWASAKI Robotics GmbH.

All rights reserved.

Symbols

Items that require special attention in this manual are marked with the following sym-

bols.

Ensure proper operation of the robot and prevent injury or property damage by follow-

ing the safety instructions in the boxes with these symbols.

Failure to observe the specified contents could possibly

result in injury or, in the worst case, death.

WARNING

Identifies precautions regarding robot specifications, han-

dling, teaching, operation, and maintenance.

[ATTENTION]

WARNING

1. The accuracy and effectiveness of the diagrams,

procedures and explanations in this manual cannot

be confirmed with absolute certainty. Should any un-

explained problems occur, contact Kawasaki Robotics GmbH at the

above address.

2. To ensure that all work is performed safely, read and

understand this manual. In addition, refer to all applicable laws,

regulations, and related materials, as well as the safety state-

ments described in each chapter.

Prepare appropriate safety measures and procedures

for actual work.

ASTORINO C# API

2

Paraphrases

The following formatting rules are used in this manual:

• For a particular keystroke, the respective key is enclosed in angle brackets, e.g.

<F1> or <Enter>.

• For the button of a dialog box or the toolbar, the button name is

enclosed in square brackets, e.g. [Ok] or [Reset].

• Selectable fields are marked with a square box .

If selected a check mark is shown inside the symbol ☑.

Change log:

Date Change Description

2024/09/06 Create a document

2025/03/03 Added document number

2025/09/03 Fixed RTC motion mode description

Content

Preface ... I

Symbols .. 1

Paraphrases ... 2

1 Nomenclature in this manual .. 1

2 Overview of ASTORINO .. 2

3 Technical specifications .. 3

4 Safety instructions .. 4

4.1 General information on safety .. 4

5 C# API .. 5

5.1 API introduction .. 5

6 Files description .. 5

7 General Information .. 5

8 Common return values .. 6

8.1 Common methods ... 7

8.1.1 Get API Version .. 7

8.1.2 Find COM port .. 7

8.1.3 Find IP address .. 7

8.2 Set TimeOut ... 7

8.3 Set Motion TimeOut .. 7

8.3.1 Connect ... 8

8.3.2 ConnectViaUART ... 8

8.3.3 Disconnect ... 8

8.3.4 Cancel Motion .. 8

8.3.5 Emergency Stop ... 8

8.4 Kinematics and unit conversion methods ... 9

8.4.1 Forward Kinematics .. 9

8.4.2 Inverse Kinematics ... 10

8.4.3 RPY to OAT conversion .. 10

8.4.4 OAT to RPY conversion .. 10

8.5 Read robot status and parameters methods ... 11

8.5.1 Read Status bytes .. 11

8.5.2 Read motors status ... 11

8.5.3 Read inHOME bit status ... 11

8.5.4 Read Repeat Mode bit status .. 11

8.5.5 Read HOLD bit status .. 12

8.5.6 Read Cycle On bit status.. 12

8.5.7 Read E-Stop bit status .. 12

8.5.8 Read Error bit status ... 12

8.5.9 Read Ready bit status ... 12

ASTORINO C# API

2

8.5.10 Read External Hold On bit status .. 13

8.5.11 Read Safety Fence On bit status ... 13

8.5.12 Read Repeat Cont On bit status .. 13

8.5.13 Read Step Once On bit status ... 13

8.5.14 Read Step Waiting On bit status ... 13

8.5.15 Read DryRun status .. 14

8.5.16 Read Zeroing Done bit status ... 14

8.5.17 Read inMotion bit status .. 14

8.5.18 Read I/O Active Module On bit status .. 14

8.5.19 Read ModbusConnected bit status .. 14

8.5.20 Read Collision detection module active bit status .. 15

8.5.21 Read Zeroing is running bit status .. 15

8.5.22 Read Teach motion active bit status .. 15

8.5.23 Read in motion command bit status .. 15

8.5.24 Read currently selected Teach Motion speed .. 15

8.5.25 Read currently selected TOOL number ... 16

8.5.26 Read currently selected Teach motion mode .. 16

8.5.27 Read endstop (Hall sensor) state .. 16

8.5.28 Read current joint position ... 16

8.5.29 Read current joint velocity ... 16

8.5.30 Read current Pose .. 17

8.5.31 Read current TCP speed .. 17

8.5.32 Read current CPU temperature ... 17

8.5.33 Read current Monitor speed ... 17

8.5.34 Read error code.. 17

8.5.35 Read serial number ... 18

8.5.36 Read firmware version .. 18

8.5.37 Read all Transformation Points ... 18

8.5.38 Read one Transformation Point data ... 18

8.5.39 Read all Joint Points .. 18

8.5.40 Read one Joint Point data .. 19

8.5.41 Read TOOL transformation ... 19

8.5.42 Read all stored programs names .. 19

8.5.43 Read main (start-up) program name ... 19

8.5.44 Read selected program name ... 19

8.5.45 Read accelerometer data ... 20

8.6 Set robot status and parameters methods ... 20

8.6.1 Set Motors ON .. 20

8.6.2 Set Motors OFF .. 20

8.6.3 Reset .. 20

8.6.4 Hold .. 20

ASTORINO C# API

3

8.6.5 Run (hold off) .. 21

8.6.6 Turn DryRun On ... 21

8.6.7 Turn DryRun Off ... 21

8.6.8 Set Repeat Cont On .. 21

8.6.9 Set Repeat Cont Off (Repeat Once) ... 21

8.6.10 Set Step Once .. 21

8.6.11 Set Step Cont .. 21

8.6.12 Next step... 22

8.6.13 Cycle start ... 22

8.6.14 Cycle stop.. 22

8.6.15 Set currently selected TOOL number ... 22

8.6.16 Set currently selected WORK number .. 22

8.6.17 Set HOME data to current position of a robot ... 22

8.6.18 Set monitor speed .. 22

8.6.19 Set HOME position to specific data .. 23

8.6.20 Save current position to a Joint point .. 23

8.6.21 Save current position to a Transformation point ... 23

8.6.22 Set Main program (Start-up program) ... 23

8.6.23 Select program (PRIME) .. 23

8.6.24 Remove point ... 24

8.6.25 Set TOOL data ... 24

8.7 I/O methods .. 24

8.7.1 Read input state ... 24

8.7.2 Read output state ... 24

8.7.3 Read internal signal state .. 24

8.7.4 Set output state ... 25

8.7.5 Set internal signal state ... 25

8.8 Synchronious motion methods (blocking) ... 25

8.8.1 Start Zeroing ... 25

8.8.2 HOME.. 25

8.8.3 JMOVE to saved position .. 25

8.8.4 JMOVE to point data .. 26

8.8.5 JAPPRO to saved position .. 26

8.8.6 JAPPRO to point data .. 27

8.8.7 LMOVE to saved position ... 27

8.8.8 LMOVE to point data ... 27

8.8.9 LAPPRO to saved position .. 28

8.8.10 LAPPRO to point data .. 28

8.8.11 CMOVE to saved position ... 28

8.8.12 CMOVE to point data ... 29

8.9 Asynchronious motion methods (no blocking) ... 29

ASTORINO C# API

4

8.9.1 Start Zeroing ... 29

8.9.2 HOME.. 29

8.9.3 JMOVE to saved position .. 29

8.9.4 JMOVE to point data .. 30

8.9.5 JAPPRO to saved position .. 30

8.9.6 JAPPRO to point data .. 31

8.9.7 LMOVE to saved position ... 31

8.9.8 LMOVE to point data ... 31

8.9.9 LAPPRO to saved position .. 32

8.9.10 LAPPRO to point data .. 32

8.9.11 CMOVE to saved position ... 32

8.9.12 CMOVE to point data ... 33

8.10 RTC commands .. 33

8.11 RTC commands .. 33

8.12 Turn on RTC ... 34

8.13 Turn off RTC .. 34

8.14 Set RTC offsets ... 34

8.15 Execute RTC data motion ... 35

8.16 AS commands .. 35

8.16.1 Execute AS command ... 35

8.16.2 Execute AS command Asynchronous ... 36

9 Example .. 36

9.1 Visual Studio – WinForms example ... 36

9.2 Visual Studio – Console Application ... 38

10 Hardware connection ... 40

10.1 USB connection .. 40

10.2 Ethernet connection .. 40

10.3 USB to UART (TTL) converter ... 41

11 Manufacturer information ... 42

1 Nomenclature in this manual

The author of the manual tries to use generally valid terminology while achieving the

greatest possible logical sense. Unfortunately, it must be noted that the terminology

is reversed depending on the point of view when considering one and the same topic.

Also it is to be stated that in the course of the computer and software history termi-

nologies developed in different way. One will find therefore in a modern manual no

terminologies, which always satisfy 100% each expert opinion.

ASTORINO C# API

2

2 Overview of ASTORINO

The ASTORINO is a 6-axis learning robot developed specifically for educational institu-

tions such as schools and universities. The robot design is based to be 3D printed

with PET-G filament. Damaged parts can be reproduced by the user using a compati-

ble 3D printer.

Programming and control of the robot is done by the "astorino" software.

The latest software version and 3D files can be downloaded from the KAWASAKI RO-

BOTICS FTP server:

https://ftp.kawasakirobot.de/Software/Astorino/

Just like Kawasaki’s industrial Robots the ASTORINO is programmed using AS lan-

guage. Providing transferable programing skills from the classroom to real industrial

applications.

Disclaimer of Warranties

The software is provided "as is," without warranty of any kind, express or implied, including

but not limited to the warranties of merchantability, fitness for a particular purpose, and non-

infringement. In no event shall the authors or copyright holders be liable for any claim, dam-

ages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out

of, or in connection with the software or the use or other dealings in the software.

https://ftp.kawasakirobot.de/Software/Astorino/

ASTORINO C# API

3

3 Technical specifications

Characteristics ASTORINO

Type

Max. lifting capacity

6-axis robot

1 kg

Number of axes 6

Max. range 578 mm

Repeatability ±0.2 mm

Motion range

Axis 1 (JT1) ±158°

Axis 2 (JT2) -90°÷127°

Axis 3 (JT3) -168°÷0°

Axis 4 (JT4) ±240°

Axis 5 (JT5) ±120°

Axis 6 (JT6) ±360°

Max. single axis speed

Axis 1 (JT1) 38°/s

Axis 2 (JT2) 26°/s

Axis 3 (JT3) 26°/s

Axis 4 (JT4) 67.5°/s

Axis 5 (JT5) 67.5°/s

Axis 6 (JT6) 128.5°/s

Allowable moment

Axis 4 (JT4) 6.2 Nm

Axis 5 (JT5) 1.45 Nm

Axis 6 (JT6) 1.1 Nm

Working environment
Temperature 0–40°C

Humidity 35–80%

Controller Teensy 4.1

Inputs/Outputs
 8/8 (PNP 8 mA, NPN 15 mA)

 2/2 (24V PNP on the JT3)

Max. current consumption 144 W

Power supply 100–240 V, 50–60 Hz

Weight 12 kg

Mounting position Floor

Material PET-G

Colour Black

Communication
MODBUS TCP, TCP/IP, UDP,

TLL SERIAL

Collision detection Accelerometer

Power loss safety Brakes on JT2 and JT3

Options

24V I/O-module 8 × Inputs / Outputs

7th axis Linear Track

Vision system OpenMV

Conveyor tracking Max. 2 Encoder

ASTORINO C# API

4

4 Safety instructions

4.1 General information on safety

Astorino robot does not incorporate breaks on other joints

than 2 and 3. During power failure robot might collapse.
User safety and vigilance is necessary.

Always ensure the personal safety of users and others when operating the robot arm or start-

ing the robot cell!

• In its basic version, the robot has no safety-related components for the robotic workstation.

Such components may be required, depending on the target application. The basic version of

the robot is provided with an emergency stop button.

• CE marking: The robot arm, when operating in factory applications, must undergo a risk as-

sessment and comply with applicable safety regulations to ensure personal safety. Depending

on the outcome of the assessment, further safety features should be integrated. These typi-

cally include safety relays and door switches. The person responsible here is the commission-

ing engineer. Educational applications do not require additional safety components.

• The robot controller includes a 24 V power supply that must be supplied with mains voltage

(100/240 V). Please check the label on the power supply. Only qualified personnel can con-

nect the power supply to the mains and put it into operation.

• Works carried out on the robot's electronic components should only be performed by quali-

fied personnel. Check current guidelines for electrostatic discharges (ESD).

 • Always disconnect the robot from the power supply (100/240 V) when working on the ro-

bot base (controller) or any electronic components connected to the robot controller.

• Hot-plugging is forbidden! It could lead to a permanent damage to motor modules. Do not

install or remove any modules or plug/disconnect connectors (e.g. emergency stop button,

DIO modules, motor connectors) while the power is on.

• The robot arm must be placed on a stable surface and bolted or otherwise secured.

• Use and store the robot only in a dry and clean place.

• Use the system only in a room temperature (15° to 32°C) — recommended.

ASTORINO C# API

5

5 C# API

5.1 API introduction

Astorino robot can be controlled by this API with a .NET applications achieving data

transmission through certain communication protocols. The communication can be re-

alized by USB-serial port(COM), Ethernet TCP/IP or USB to UART (TLL) converter.

API features:

• Realization of astorino communication protocol

• Long term support by utilizing .NET 6.0 version

• API contains synch and async methods

All motion commands can be execute only in REPEAT MODE.

For more information about communication protocol please refer to astorino Commu-

nication Protocol Manual.

6 Files description

Compiled version of astorino api contains of several dll files:

• astorino_lib.dll – all communication functions

• System.IO.Ports.dll – COM port library

• System.Managment.dll – COM port library – allows to look for astorino from

COM port list.

• ZeroConf.dll – library for mDNS

• System.Reactive.dll – library required by ZeroConf

• System.CodeDom.dll – library required by ZeroConf

• astorino.cs – source code of the library

7 General Information

astorino robot is mainly programmed and operated in astorino software or Teach Pen-

dant, not all functions and operations are available from API. API should be used in

combination with astorino software or robot’s Teach Pendant.

All motion commands can be executed only in REPEAT

MODE! Greater user attention is strongly recommended!

WARNING

ASTORINO C# API

6

8 Common return values

All methods return one of listed below values:

• Byte ReturnCode;

• Struct retVal:
o Double[] Values,
o String Name,
o List<string> Names,
o Byte[] bValues,
o Byte ReturnCode

• String[],

• Struct TransformationPoints:
o Double[,] points,
o Byte ReturnCode,

• Struct JointPoints:
o Double[,] points,
o Byte ReturnCode

RETURN CODE DESCRIPTION

0X00 Instruction completed successfully
0X01 CRC error
0X02 Estop or error
0X03 Cycle is ON
0X04 SD save error
0X05 TeachMode – TP deadman switch is OFF
0X06 Cycle is OFF
0X07 Robot is not ready
0X08 Value out range
0X09 AS command failed
0X10 Unknown command ID
0X11 Data frame error
0X12 Motion out of range
0X13 JT command suddenly changed
0X14 Motion out of Working Space
0X15 Robot is already in motion
0X16 Zeroing is not done
0X17 Mastering data missing
0X18 Not allowed in TeachMode
0X19 Zeroing already done
0X20 Response timeout
0X21 Point does not exist
0X22 Wrong data
0X23 Program is not selected
0X24 Motion command exceeded maximum joint speed
0X25 RTC is OFF
0X26 HOLD is active
0X27 Motion disturbed
0XFE Send instruction failed
0XFF Communication is not established

In case of structs as returned values only if ReturnCode is 0x00 then other values are

correctly returned.

For example retVal ret = ForwardKinematics(…) only returned correct values if ret.Re-

turnCode = 0x00, then ret.Values[] contains calculation results.

TransformationPoint and JointPoints are described like this [index, {values}] for ex-

ample

index val1 val2 val3 val4 val5 val6 val7 exist

0 90 100 -20 45 66 44 0 1

1 0 0 0 0 0 0 0 0

2 10 -10 45 1 12 11 0 1

If exist is equal to 1 then point is saved in robots memory.

ASTORINO C# API

7

8.1 Common methods

Those methods are used to set common parameters of API, search for astorino, con-

nect etc.

8.1.1 Get API Version

Prototype string getLibVersion()

Description returns API version

Parameters void

Return string

8.1.2 Find COM port

Prototype List<string> findUSB()

Description returns List of COM ports associated with astorino robot

Parameters void

Return List<string> or null if not found

8.1.3 Find IP address

Prototype async Task<List<string>> findEthernet()

Description returns a list of IP addresses associated with astorino robot

Parameters void

Return List<string> or null if not found

8.2 Set TimeOut

Prototype void setTimeOut(int timeOut)

Description sets communication TimeOut for non-motion instructions (default 1000 ms)

Parameters timeOut: value in ms

Return void

8.3 Set Motion TimeOut

Prototype void setMotionTimeOut(int timeOut)

Description sets communication TimeOut for motion instructions (default 30000 ms)

Parameters timeOut: value in ms

Return void

ASTORINO C# API

8

8.3.1 Connect

Prototype byte Connect(string path)

Description starts connection with a robot

Parameters path: COM port name or IP Adress in string format e.g “COM3”

Return byte ReturnCode

8.3.2 ConnectViaUART

Prototype byte ConnectViaUART(string portName)

Description starts connection with a robot via USB to UART (TTL) converter

Parameters portName: COM port name “COM3”

Return byte ReturnCode

8.3.3 Disconnect

Prototype byte Disconnect()

Description closes connection with a robot

Parameters void

Return byte ReturnCode

8.3.4 Cancel Motion

Prototype byte cancelMotion()

Description cancels current motion – robot decelerates and stops – cycle is off afterwards

Parameters void

Return byte ReturnCode

8.3.5 Emergency Stop

Prototype byte emergencyStop()

Description stops current motion – robot stops immediately – cycle is off afterwards

Parameters void

Return byte ReturnCode

ASTORINO C# API

9

8.4 Kinematics and unit conversion methods

8.4.1 Forward Kinematics

Prototype retVal ForwardKinematics(double jt1, double jt2, double jt3, double jt4, double jt5, dou-
ble jt6, double jt7)

Description return forward kinematics calculation result

Parameters double jt1..jt7 – axis angles in degrees [°]

Return retVal:

- Double[] Values – calculation result (x,y,z,o,a,t,jt7)) in [mm] and [°]
- ReturnCode

Prototype retVal ForwardKinematics(double jt1, double jt2, double jt3, double jt4, double jt5, dou-
ble jt6)

Description return forward kinematics calculation result

Parameters double jt1..jt6– axis angles in degrees [°]

Return retVal:

- Double[] Values – calculation result (x,y,z,o,a,t,jt7)) in [mm] and [°]
- ReturnCode

Prototype retVal ForwardKinematics(double[] jt)

Description return forward kinematics calculation result

Parameters double[] jt – axis angles in degrees [°]

Return retVal:

- Double[] Values – calculation result (x,y,z,o,a,t,jt7) in [mm] and [°]
- ReturnCode

ASTORINO C# API

10

8.4.2 Inverse Kinematics

Prototype retVal InverseKinematics(double x, double y, double z, double o, double a, double t,
double jt7)

Description return inverse kinematics calculation result

Parameters double x,y,z, jt7 in [mm] o,a,t – in degrees [°]

Return retVal:

- Double[] Values – calculation result (jt1, jt2 , jt3, jt4, jt5, jt6, jt7) in degrees [°]
- ReturnCode

Prototype retVal InverseKinematics(double x, double y, double z, double o, double a, double t)

Description return inverse kinematics calculation result

Parameters double x,y,z in [mm] o,a,t – in degrees [°]

Return retVal:

- Double[] Values – calculation result (jt1, jt2 , jt3, jt4, jt5, jt6, jt7) in degrees [°]
- ReturnCode

Prototype retVal InverseKinematics(double[] pose)

Description return inverse kinematics calculation result

Parameters double[] pose (x,y,z,o,a,t,jt7) or (x,y,z,o,a,t) x,y,z,jt7 in [mm] o,a,t – in degrees [°]

Return retVal:

- Double[] Values – calculation result (jt1, jt2 , jt3, jt4, jt5, jt6, jt7) in degrees [°]
- ReturnCode

8.4.3 RPY to OAT conversion

Prototype retVal toOAT(double rx, double ry, double rz)

Description return OAT angles calculated from RPY

Parameters double rx, ry, rz in degrees [°]

Return retVal:

- Double[] Values – calculation result (o, a, t) in degrees [°]
- ReturnCode

8.4.4 OAT to RPY conversion

Prototype retVal toRPY(double o, double a, double t)

Description return RPY angles calculated from OAT

Parameters double o, a, t in degrees [°]

Return retVal:

- Double[] Values – calculation result (rx, ry, rz) in degrees [°]
- ReturnCode

ASTORINO C# API

11

8.5 Read robot status and parameters methods

8.5.1 Read Status bytes

Prototype retVal readStatusBytes()

Description reads all status bytes described in Communication Protocol Manual

Parameters void

Return retVal:

- byte[] bValues – status bytes [1..5]
- ReturnCode

8.5.2 Read motors status

Prototype retVal isMotorOn()

Description read the status of motors

Parameters void

Return retVal:

- int iVal: 1 – MotorsON, -1 - MotorsOff
- ReturnCode

8.5.3 Read inHOME bit status

Prototype retVal isInHome()

Description read the status of in Home status

Parameters void

Return retVal:

- int iVal: 1 – in Home, -1 – not in Home
- ReturnCode

8.5.4 Read Repeat Mode bit status

Prototype retVal isRepeatModeOn()

Description read current selected robot mode (Repeat/Teach mode)

Parameters void

Return retVal:

- int iVal: 1 – in Repeat Mode, -1 – Teach Mode
- ReturnCode

ASTORINO C# API

12

8.5.5 Read HOLD bit status

Prototype retVal isHoldOn()

Description read HOLD bit status

Parameters void

Return retVal:

- int iVal: 1 – in HOLD is ON, -1 – HOLD is OFF
- ReturnCode

8.5.6 Read Cycle On bit status

Prototype retVal isCycleOn()

Description read Cycle On bit status

Parameters void

Return retVal:

- int iVal: 1 – Cycle is ON, -1 – Cycle is OFF
- ReturnCode

8.5.7 Read E-Stop bit status

Prototype retVal isEstopOn()

Description read Emergency stop bit status

Parameters void

Return retVal:

- int iVal: 1 – E-Stop is ON, -1 – E-stop is OFF
- ReturnCode

8.5.8 Read Error bit status

Prototype retVal isErrorOn()

Description read Error On bit status

Parameters void

Return retVal:

- int iVal: 1 – Error is ON, -1 – Error is OFF
- ReturnCode

8.5.9 Read Ready bit status

Prototype retVal isReadyOn()

Description read Ready bit status

Parameters void

Return retVal:

- int iVal: 1 – Ready is ON, -1 – Ready is OFF
- ReturnCode

ASTORINO C# API

13

8.5.10 Read External Hold On bit status

Prototype retVal isExternalHoldOn()

Description read Cycle On bit status

Parameters void

Return retVal:

- int iVal: 1 – Cycle is ON, -1 – Cycle is OFF
- ReturnCode

8.5.11 Read Safety Fence On bit status

Prototype retVal isSafetyFenceOn()

Description read Safety Fence On bit status

Parameters void

Return retVal:

- int iVal: 1 – Safety Fence is ON, -1 – Safety Fence is OFF
- ReturnCode

8.5.12 Read Repeat Cont On bit status

Prototype retVal isRepeatContOn()

Description read Repeat Cont On bit status

Parameters void

Return retVal:

- int iVal: 1 – Repeat Cont is ON, -1 – Repeat Cont is OFF (Repeat Once is ON)
- ReturnCode

8.5.13 Read Step Once On bit status

Prototype retVal isStepOnceOn()

Description read Step Once On bit status

Parameters void

Return retVal:

- int iVal: 1 – Step Once is ON, -1 – Step Once is OFF (Step Cont is ON)
- ReturnCode

8.5.14 Read Step Waiting On bit status

Prototype retVal isStepWaitingOn()

Description read Step waiting On bit status

Parameters void

Return retVal:

- int iVal: 1 – Step is waiting, -1 – Step is not waiting
- ReturnCode

ASTORINO C# API

14

8.5.15 Read DryRun status

Prototype retVal isDryRunOn()

Description read DryRun status

Parameters void

Return retVal:

- int iVal: 1 – DryRun is ON, -1 – DryRun is OFF
- ReturnCode

8.5.16 Read Zeroing Done bit status

Prototype retVal isZeroingDone()

Description read Zeroing done status

Parameters void

Return retVal:

- int iVal: 1 – Zeroing is done, -1 – Zeroing is done
- ReturnCode

8.5.17 Read inMotion bit status

Prototype retVal isInMotion()

Description read if robot is currently in motion

Parameters void

Return retVal:

- int iVal: 1 – in Motion, -1 – robot is not moving
- ReturnCode

8.5.18 Read I/O Active Module On bit status

Prototype retVal isIOActive()

Description read status of an IO module

Parameters void

Return retVal:

- int iVal: 1 – IO module is ON, -1 – IO module is off
- ReturnCode

8.5.19 Read ModbusConnected bit status

Prototype retVal isModbusConnected()

Description read Modbus connected status bit

Parameters void

Return retVal:

- int iVal: 1 – is connected, -1 – is disconnected
- ReturnCode

ASTORINO C# API

15

8.5.20 Read Collision detection module active bit status

Prototype retVal isCollisionDetectionActive()

Description read Collision detection module status

Parameters void

Return retVal:

- int iVal: 1 – Collision detection is ON, -1 – Collison detection is OFF
- ReturnCode

8.5.21 Read Zeroing is running bit status

Prototype retVal isZeroingRunning()

Description read zeroing is running bit status

Parameters void

Return retVal:

- int iVal: 1 – zeroing is running, -1 – zeroing is not running
- ReturnCode

8.5.22 Read Teach motion active bit status

Prototype retVal isTeachMotionActive()

Description read an information if user is moving a robot in Teach mode

Parameters void

Return retVal:

- int iVal: 1 – Active, -1 – not Active
- ReturnCode

8.5.23 Read in motion command bit status

Prototype retVal isMotionCommand()

Description read if robot is executing motion command in TeachMode

Parameters void

Return retVal:

- int iVal: 1 – Active, -1 – not Active
- ReturnCode

8.5.24 Read currently selected Teach Motion speed

Prototype retVal readSelectedTeachSpeed()

Description reads currently selected Teach motion speed

Parameters void

Return retVal:

- int iVal: [1..5]
- ReturnCode

ASTORINO C# API

16

8.5.25 Read currently selected TOOL number

Prototype retVal readSelectedToolNumber()

Description reads currently selected Tool number

Parameters void

Return retVal:

- int iVal: [1..4]
- ReturnCode

8.5.26 Read currently selected Teach motion mode

Prototype retVal readSelectedTeachMotionMode()

Description reads currently selected Teach motion mode

Parameters void

Return retVal:

- int iVal: 1 – TOOL, 2 – JOINT, 3 – CONV, 4 – BASE, 5 - WORK
- ReturnCode

8.5.27 Read endstop (Hall sensor) state

Prototype retVal isHallSensorOn(int jt)

Description reads current state of a joints zeroing-hall sensor

Parameters jt – joint number

Return retVal:

- int iVal: 1 – sensor is ON, -1 – sensor is OFF
- ReturnCode

8.5.28 Read current joint position

Prototype retVal JT()

Description reads current robot position – joint angles in degrees

Parameters void

Return retVal:

- Double[] Values – (jt1, jt2, jt3, jt4, jt5, jt6, jt7) in degrees [°]
- ReturnCode

8.5.29 Read current joint velocity

Prototype retVal JT_Velocity()

Description reads current robot speed – joint velocity in degrees/s

Parameters void

Return retVal:

- Double[] Values – (jt1, jt2, jt3, jt4, jt5, jt6, jt7) in degrees/s [°/s]
- ReturnCode

ASTORINO C# API

17

8.5.30 Read current Pose

Prototype retVal Pose()

Description reads current robot position – pose

Parameters void

Return retVal:

- Double[] Values – (x, y, z, o, a, t, jt7) in [mm] and degrees [°]
- ReturnCode

8.5.31 Read current TCP speed

Prototype retVal TCP_Velocity()

Description reads current robot speed – TCP velocity

Parameters void

Return retVal:

- Double[] Values – (dx, dy, dz, drx, dry, drz, djt7) in [mm/s] and degrees/s [°/s]
- ReturnCode

8.5.32 Read current CPU temperature

Prototype retVal cpuTemp()

Description reads current CPU temperature

Parameters void

Return retVal:

- int iVal – temperature in [°C]
- ReturnCode

8.5.33 Read current Monitor speed

Prototype retVal readMonitorSpeed()

Description reads current Monitor speed

Parameters void

Return retVal:

- int iVal – monitor speed [%]
- ReturnCode

8.5.34 Read error code

Prototype retVal readErrorCode()

Description reads error code

Parameters void

Return retVal:

- int iVal – error code
- ReturnCode

ASTORINO C# API

18

8.5.35 Read serial number

Prototype retVal serialNumber()

Description reads robots serial number

Parameters void

Return retVal:

- string Name – serial number
- ReturnCode

8.5.36 Read firmware version

Prototype retVal firmwareVersion()

Description reads robots firmware version

Parameters void

Return retVal:

- string Name – firmware version
- ReturnCode

8.5.37 Read all Transformation Points

Prototype TransformationPoints readTransPointsData()

Description reads all transformation points data (Pxx)

Parameters void

Return TransformationPoints:

- Double[,] points – array of positions [index,[x,y,z,o,a,t,jt7, exist]]
- ReturnCode

8.5.38 Read one Transformation Point data

Prototype retVal readTransformationPoint(int index)

Description reads selected transformation point data (Pxx)

Parameters void

Return retVal:

- Double[] Values – array [x,y,z,o,a,t,jt7]
- ReturnCode

8.5.39 Read all Joint Points

Prototype JointPoints readJointPointsData()

Description reads all joint points data (#Pxx)

Parameters void

Return JointPoints:

- Double[,] points – array of positions [index,[jt1,jt2,jt3,jt4,jt5,jt6,jt7, exist]]
- ReturnCode

ASTORINO C# API

19

8.5.40 Read one Joint Point data

Prototype retVal readJointPoint(int index)

Description reads selected joint point data (#Pxx)

Parameters void

Return retVal:

- Double[] Values – array [jt1,jt2,jt3,jt4,jt5,jt6,jt7]
- ReturnCode

8.5.41 Read TOOL transformation

Prototype retVal readToolData(int index)

Description reads selected TOOL transformation data

Parameters void

Return retVal:

- Double[] points – array [x,y,z,o,a,t]
- ReturnCode

8.5.42 Read all stored programs names

Prototype retVal readProgramsName()

Description reads all saved programs names in robots memory

Parameters void

Return retVal:

- string[,] Names – array of programs names
- ReturnCode

8.5.43 Read main (start-up) program name

Prototype retVal mainProgram()

Description reads the name of a start-up program

Parameters void

Return retVal:

- string Name
- ReturnCode

8.5.44 Read selected program name

Prototype retVal selectedProgram()

Description reads the name of a selected program

Parameters void

Return retVal:

- string Name
- ReturnCode

ASTORINO C# API

20

8.5.45 Read accelerometer data

Prototype retVal AccelerometerData()

Description reads accelerometer data (valid only for B-version)

Parameters void

Return retVal:

- Double[] Values – array [x,y,z]
- ReturnCode

Accelerometer data contains data of 3 axes. Range is from -2G to 2G.

8.6 Set robot status and parameters methods

8.6.1 Set Motors ON

Prototype byte setMotorOn()

Description turns motors on

Parameters void

Return byte ReturnCode

8.6.2 Set Motors OFF

Prototype byte setMotorOn()

Description turns motors off

Parameters void

Return byte ReturnCode

8.6.3 Reset

Prototype byte reset()

Description resets error and if possible sets Ready status

Parameters void

Return byte ReturnCode

8.6.4 Hold

Prototype byte Hold()

Description Holds the robot task execution

Parameters void

Return byte ReturnCode

ASTORINO C# API

21

8.6.5 Run (hold off)

Prototype byte Run()

Description Turns off Hold switch – resumes the robot task execution

Parameters void

Return byte ReturnCode

8.6.6 Turn DryRun On

Prototype byte turnDryRunOn()

Description turns on the DryRun mode

Parameters void

Return byte ReturnCode

8.6.7 Turn DryRun Off

Prototype byte turnDryRunOff()

Description turns off the DryRun mode

Parameters void

Return byte ReturnCode

8.6.8 Set Repeat Cont On

Prototype byte setRepeatCont()

Description turns on looping of an AS written program

Parameters void

Return byte ReturnCode

8.6.9 Set Repeat Cont Off (Repeat Once)

Prototype byte setRepeatOnce()

Description turns off looping of an AS written program

Parameters void

Return byte ReturnCode

8.6.10 Set Step Once

Prototype byte setStepOnce()

Description turns on step mode execution of an AS written program

Parameters void

Return byte ReturnCode

8.6.11 Set Step Cont

Prototype byte setStepCont()

Description turns off step mode execution of an AS written program

Parameters void

Return byte ReturnCode

ASTORINO C# API

22

8.6.12 Next step

Prototype byte nextStep()

Description executes a next step of currently running program in step Once mode

Parameters void

Return byte ReturnCode

8.6.13 Cycle start

Prototype byte cycleStart()

Description turns on the execution of a selected AS written program

Parameters void

Return byte ReturnCode

8.6.14 Cycle stop

Prototype byte cycleStop()

Description turns off the execution of a selected AS written program – robot decelerates and stops

Parameters void

Return byte ReturnCode

8.6.15 Set currently selected TOOL number

Prototype byte setTool(int index)

Description selects currently tool number used by robot

Parameters index – tool number [1, 2, 3]

Return byte ReturnCode

8.6.16 Set currently selected WORK number

Prototype byte setWork(int index)

Description selects currently work number used by robot

Parameters index – tool number [1, 2]

Return byte ReturnCode

8.6.17 Set HOME data to current position of a robot

Prototype byte setHomeHere()

Description sets HOME position to current position of a robot

Parameters void

Return byte ReturnCode

8.6.18 Set monitor speed

Prototype byte setMonitorSpeed(int speed)

Description sets monitor speed [1-100%]

Parameters speed – 1 – 100 [%]

Return byte ReturnCode

ASTORINO C# API

23

8.6.19 Set HOME position to specific data

Prototype byte setHome(double jt1, double jt2, double jt3, double jt4, double jt5, double jt6, dou-
ble jt7)

Description sets robots HOME position to a specific data

Parameters double jt1..jt7 – in degrees [°]

Return byte ReturnCode

Prototype byte setHome(double jt1, double jt2, double jt3, double jt4, double jt5, double jt6)

Description sets robots HOME position to a specific data

Parameters double jt1..jt6 – in degrees [°]

Return byte ReturnCode

Prototype byte setHome(double[] jt)

Description sets robots HOME position to a specific data

Parameters double[] jt – in degrees [°]

Return byte ReturnCode

8.6.20 Save current position to a Joint point

Prototype byte saveCurrentJointsAsPoint(int point)

Description saves current position (joint angles) of a robot to a selected point (#Px)

Parameters point – point number from #P list [0-99]

Return byte ReturnCode

8.6.21 Save current position to a Transformation point

Prototype byte saveCurrentPoseAsPoint(int point)

Description saves current position (pose) of a robot to a selected point (Px)

Parameters point – point number from P list [0-99]

Return byte ReturnCode

8.6.22 Set Main program (Start-up program)

Prototype byte setMainProgram (string name)

Description sets selected program as a start-up program

Parameters name – program name

Return byte ReturnCode

8.6.23 Select program (PRIME)

Prototype byte selectProgram (string name)

Description selects a program for execution

Parameters name – program name

Return byte ReturnCode

ASTORINO C# API

24

8.6.24 Remove point

Prototype byte removePoint (int number, int type)

Description saves current position (pose) of a robot to a selected point (Px)

Parameters numer – point number [0-99],
type – point type: 1 – Transformation (Px), 2 – Joint (#Px)

Return byte ReturnCode

8.6.25 Set TOOL data

Prototype byte mainProgram(int index, double[] data)

Description sets TOOL data for a specific TOOL number

Parameters int index – [1..3]
double[] – {x,y,z,o,a,t}

Return byte ReturnCode

8.7 I/O methods

8.7.1 Read input state

Prototype retVal readInput(int ind)

Description reads selected input state

Parameters ind – IO index [1..58]

Return retVal:

- int iVal: 1 – Input is ON, -1 – Input is OFF
- ReturnCode

8.7.2 Read output state

Prototype retVal readOutput(int ind)

Description reads selected output state

Parameters ind – IO index [1..58]

Return retVal:

- int iVal: 1 – Output is ON, -1 – Output is OFF
- ReturnCode

8.7.3 Read internal signal state

Prototype retVal readInternal(int ind)

Description reads selected internal signal state

Parameters ind – internal signal index [1..16]

Return retVal:

- int iVal: 1 – Internal signal is ON, -1 – Internal signal is OFF
- ReturnCode

ASTORINO C# API

25

8.7.4 Set output state

Prototype byte setOutput(int ind, int state)

Description sets selected output state

Parameters ind – IO index [1..58]
state – signal state: 1 – ON, -1 - OFF

Return byte ReturnCode

8.7.5 Set internal signal state

Prototype byte setInternal(int ind, int state)

Description sets selected internal signal state

Parameters ind – internal signal index [1..16]
state – signal state: 1 – ON, -1 - OFF

Return byte ReturnCode

8.8 Synchronious motion methods (blocking)

8.8.1 Start Zeroing

Prototype byte Zero()

Description starts Zeroing procedure

Parameters void

Return byte ReturnCode

8.8.2 HOME

Prototype byte HOME(byte spd, byte acc, byte dec)

Description starts motion to HOME position in JOINT interpolation

Parameters spd: [1..100%]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd

Return byte ReturnCode

8.8.3 JMOVE to saved position

Prototype byte JMOVE(byte pointType, byte pointIndex, byte spd, byte acc, byte dec)

Description starts motion to selected point in JOINT interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]

Return byte ReturnCode

ASTORINO C# API

26

8.8.4 JMOVE to point data

Prototype byte JMOVE(byte pointType, byte spd, byte acc, byte dec, double[] target)

Description starts motion to target as a data array in JOINT interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return byte ReturnCode

8.8.5 JAPPRO to saved position

Prototype byte JAPPRO(byte pointType, byte pointIndex, byte spd, byte acc, byte dec, double offset)

Description starts approach motion to selected point in JOINT interpolation. Offset sets the distance
from a destination point in [mm] in TOOL coordinate system according to Z direction

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
offset: [mm]

Return byte ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

27

8.8.6 JAPPRO to point data

Prototype byte JAPPRO(byte pointType, byte spd, byte acc, byte dec, double[] target, double offset)

Description starts approach motion to target as a data array in JOINT interpolation. Offset sets the
distance from a destination point in [mm] in TOOL coordinate system according to Z di-
rection

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
offset: [mm]

Return byte ReturnCode

8.8.7 LMOVE to saved position

Prototype byte LMOVE(byte pointType, byte pointIndex, byte spd, byte acc, byte dec)

Description starts motion to selected point in LINEAR interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd

Return byte ReturnCode

8.8.8 LMOVE to point data

Prototype byte LMOVE(byte pointType, byte spd, byte acc, byte dec, double[] target)

Description starts motion to target as a data array in LINEAR interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return byte ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

28

8.8.9 LAPPRO to saved position

Prototype byte LAPPRO(byte pointType, byte pointIndex, byte spd, byte acc, byte dec, double offset)

Description starts approach motion to selected point in LINEAR interpolation. Offset sets the dis-
tance from a destination point in [mm] in TOOL coordinate system according to Z direc-
tion

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
offset: [mm]

Return byte ReturnCode

8.8.10 LAPPRO to point data

Prototype byte LAPPRO(byte pointType, byte spd, byte acc, byte dec, double[] target, double offset)

Description starts approach motion to target as a data array in LINEAR interpolation. Offset sets the
distance from a destination point in [mm] in TOOL coordinate system according to Z di-
rection

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
offset: [mm]

Return byte ReturnCode

8.8.11 CMOVE to saved position

Prototype byte CMOVE(byte pointType, byte pointIndex1, byte pointIndex2, byte spd, byte acc, byte dec)

Description starts motion to selected points in CIRCULAR interpolation, motion start in current posi-
tion, via pointIndex1 and ends in pointIndex2

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex1: [0..99] point index
pointIndex2: [0..99] point index
spd: [1..250 mm/s]
acc: [1..100%]
dec: [1..100%]

Return byte ReturnCode

This command might cause rapid movement if send data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

29

8.8.12 CMOVE to point data

Prototype byte CMOVE(byte pointType, byte spd, byte acc, byte dec, double[] middle, double[] target)

Description starts approach motion to target as a data array, via middle in CIRCULAR interpolation.

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [1..100%]
dec: [1..100%]
middle: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return byte ReturnCode

8.9 Asynchronious motion methods (no blocking)

8.9.1 Start Zeroing

Prototype async Task<byte> ZeroAsync()

Description starts Zeroing procedure

Parameters void

Return byte ReturnCode

8.9.2 HOME

Prototype async Task<byte> HOMEAsync(byte spd, byte acc, byte dec)

Description starts motion to HOME position in JOINT interpolation

Parameters spd: [1..100%]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd

Return byte ReturnCode

8.9.3 JMOVE to saved position

Prototype async Task<byte> JMOVEAsync(byte pointType, byte pointIndex, byte spd, byte acc, byte dec)

Description starts motion to selected point in JOINT interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]

Return byte ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

30

8.9.4 JMOVE to point data

Prototype async Task<byte> JMOVEAsync(byte pointType, byte spd, byte acc, byte dec, double[] target)

Description starts motion to target as a data array in JOINT interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return byte ReturnCode

8.9.5 JAPPRO to saved position

Prototype async Task<byte> JAPPROAsync(byte pointType, byte pointIndex, byte spd, byte acc, byte dec, double offset)

Description starts approach motion to selected point in JOINT interpolation. Offset sets the distance
from a destination point in [mm] in TOOL coordinate system according to Z direction

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
offset: [mm]

Return byte ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

31

8.9.6 JAPPRO to point data

Prototype async Task<byte> JAPPROAsync(byte pointType, byte spd, byte acc, byte dec, double[] target, double offset)

Description starts approach motion to target as a data array in JOINT interpolation. Offset sets the dis-
tance from a destination point in [mm] in TOOL coordinate system according to Z direction

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..100%]
acc: [0..100%]
dec: [0..100%]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
offset: [mm]

Return byte ReturnCode

8.9.7 LMOVE to saved position

Prototype async Task<byte> LMOVEAsync(byte pointType, byte pointIndex, byte spd, byte acc, byte dec)

Description starts motion to selected point in LINEAR interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd

Return byte ReturnCode

8.9.8 LMOVE to point data

Prototype async Task<byte> LMOVEAsync(byte pointType, byte spd, byte acc, byte dec, double[] target)

Description starts motion to target as a data array in LINEAR interpolation

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return byte ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

32

8.9.9 LAPPRO to saved position

Prototype async Task<byte> LAPPROAsync(byte pointType, byte pointIndex, byte spd, byte acc, byte dec, double offset)

Description starts approach motion to selected point in LINEAR interpolation. Offset sets the distance
from a destination point in [mm] in TOOL coordinate system according to Z direction

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex: [0..99] point index
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
offset: [mm]

Return byte ReturnCode

8.9.10 LAPPRO to point data

Prototype async Task<byte> LAPPROAsync(byte pointType, byte spd, byte acc, byte dec, double[] target, double offset)

Description starts approach motion to target as a data array in LINEAR interpolation. Offset sets the dis-
tance from a destination point in [mm] in TOOL coordinate system according to Z direction

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [0..100%] – if acc = 0 then initial speed of motion is set to spd
dec: [0..100%] – if dec = 0 then final speed of motion is set to spd
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
offset: [mm]

Return ReturnCode

8.9.11 CMOVE to saved position

Prototype async Task<byte> CMOVEAsync(byte pointType, byte pointIndex1, byte pointIndex2, byte spd, byte acc,
byte dec)

Description starts motion to selected points in CIRCULAR interpolation, motion start in current position,
via pointIndex1 and ends in pointIndex2

Parameters pointType: 1 – Transformation point, 2 – Joint point
pointIndex1: [0..99] point index
pointIndex2: [0..99] point index
spd: [1..250 mm/s]
acc: [1..100%]
dec: [1..100%]

Return ReturnCode

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

33

8.9.12 CMOVE to point data

Prototype async Task<byte> CMOVEAsync(byte pointType, byte spd, byte acc, byte dec, double[] middle,
double[] target)

Description starts approach motion to target as a data array, via middle in CIRCULAR interpolation.

Parameters pointType: 1 – Transformation point, 2 – Joint point
spd: [1..250 mm/s]
acc: [1..100%]
dec: [1..100%]
middle: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]
target: [val1, val2, val3, val4, val5, val6] or [val1, val2, val3, val4, val5, val6, val7]

Return ReturnCode

8.10 RTC commands

RTC (Real Time Control) commands can control astorino in real time. User can inject

motion offsets to cartesian motions or control the robot via external trajectory gener-

ator. Robot must be in REPEAT Mode. RTC is set to OFF automatically after disconnect

or switching to Teach Mode.

8.11 RTC commands

RTC (Real Time Control) commands can control astorino in real time. User can inject

motion offsets to cartesian motions or control the robot via external trajectory gener-

ator. Robot must be in REPEAT Mode. RTC is set to OFF automatically after disconnect

or switching to Teach Mode.

This command might cause rapid movement if sent data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

Those commands might cause rapid movement if sent

data is incorrect! Greater user attention is strongly rec-

ommended!

WARNING

This commands might cause rapid movement if send data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

34

8.12 Turn on RTC

Prototype byte RTC_ON()

Description Turns on Real Time Control

Parameters void

Return ReturnCode

8.13 Turn off RTC

Prototype byte RTC_OFF()

Description Turns off Real Time Control

Parameters Void

Return ReturnCode

8.14 Set RTC offsets

To use this command RTC switch must be ON, Values are in [mm] and [deg].

RTC offset are added to currently used Linear and Circular Motion commands every

10 ms. That allows to alter current trajectory in real time. Maximum values are 2mm

and 2 deg. Offset are cumulative, if not set to 0 will add up with every loop. Cumula-

tive offsets are reset after each motion instruction has ended.

Offsets data are in cartesian units [x,y,z] and Euler RPY angles [rx, ry, rz]

This command might cause rapid movement if send data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

ASTORINO C# API

35

Prototype byte setRTC_OffsetData(double x, double y, double z, double rx, double ry, double rz)

Description Sets RTC offset for path modulation

Parameters x,y,z in [mm] rx,ry,rz – in degrees [°]

Return ReturnCode

Prototype byte setRTC_OffsetData(double[] data)

Description Sets RTC offset for path modulation

Parameters x,y,z in [mm] rx,ry,rz – in degrees [°]

Return ReturnCode

8.15 Execute RTC data motion

To use this command RTC switch must be ON. Values are in absolute coordinates

[xzyoat jt7 or joints angle deg 1..7]

Prototype byte RTC_move(byte type, byte time, double[] target)

Description Executes motion to transmitted data. Motion is done in required time.

Parameters Type: 0x02- JT angles, 0x01- Transformation data
Time: unit [ms]
target: [x, y, z, o, a, t] – units [mm] and degrees [°]

Return ReturnCode

8.16 AS commands

8.16.1 Execute AS command

Prototype byte executeASCommand (string command)

Description Executes AS Language command

Parameters Command – AS language command

Return ReturnCode

This command might cause rapid movement if send data

is incorrect! Greater user attention is strongly recom-

mended!

WARNING

This command do not implement acceleration and decel-

eration. It is up to user commands to realize that!

WARNING

ASTORINO C# API

36

8.16.2 Execute AS command Asynchronous

Prototype async Task<byte> executeASCommandAsync (string command)

Description Executes AS Language command

Parameters Command – AS language command

Return ReturnCode

9 Example

9.1 Visual Studio – WinForms example

Create a new WinForms project based on .NET 6.0

Add Project Reference (right click on project Dependencies)

ASTORINO C# API

37

Select:

• astorino_lib.dll

• System.IO.Ports.dll

• System.Managment.dll

It should be loaded to current project:

Now create your GUI:

Example code:

using astorino_lib;

namespace Test_astorino

{

 public partial class Form1 : Form

 {

 astorino r = new astorino();

 astorino.retVal ret = new astorino.retVal();

 astorino.JointPoints j_points = new astorino.JointPoints();

 astorino.TransformationPoints t_points = new astorino.TransformationPoints();

 byte status = 0xFF;

 public Form1()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 List<string> ports = r.findUSB();

 if (ports != null)

 {

 status = r.Connect(ports.FirstOrDefault());

 }

 else

 throw new Exception("Robot is not found");

 }

Button1

Button2 Button4

Button3

ASTORINO C# API

38

 private void button3_Click(object sender, EventArgs e)

 {

 if (status == 0)

 {

 byte success = r.HOME(90, 90, 90);

 if (success != 0)

 {

 throw new Exception("Robot motion failed!");

 }

 }

 }

 private async void button4_Click(object sender, EventArgs e)

 {

 if (status == 0)

 {

 byte success = await r.HOMEAsync(90, 90, 90);

 if (success != 0)

 {

 throw new Exception("Robot motion failed!");

 }

 }

 }

 private void button2_Click(object sender, EventArgs e)

 {

 r.Disconnect();

 }

 }

}

9.2 Visual Studio – Console Application

Create a new Console application:

Add Project Reference (right click on project Dependencies)

ASTORINO C# API

39

Select:

• astorino_lib.dll

• System.IO.Ports.dll

• System.Managment.dll

It should be loaded to current project:

Write your code, for example:

using astorino_lib;

astorino robot = new astorino();

astorino.retVal retVal = new astorino.retVal();

Console.WriteLine("Hello, World!");

List<string> net = robot.findEthernet().GetAwaiter().GetResult();

if (net == null)

 throw new Exception("Robot not found");

if (robot.Connect(net.FirstOrDefault()) == 0)

{

 Console.WriteLine("Connected. Press enter key to go HOME");

 Console.ReadLine();

 if (robot.HOME(100, 90, 90) == 0)

 Console.WriteLine("Motion completed!");

 else

 Console.WriteLine("Motion failed!");

 Console.WriteLine("Finished. Disconnecting...");

 if (robot.Disconnect() == 0)

 Console.WriteLine("Disconnected");

 else

 Console.WriteLine("Failed");

}

ASTORINO C# API

40

10 Hardware connection

10.1 USB connection

For USB connection use USB-B port in the robot base.

To use the USB as a communication port, no settings need to be configured in the As-

torino software.

10.2 Ethernet connection

For Ethernet connection use Ethernet port in the robot base. Connect directly to the

PC or use ethernet switch

To use the Ethernet as a communication port, the Ethernet settings need to be con-

figured as connection in the Astorino software.

USB-B port

Ethernet port

Serial (TTL) port

ASTORINO C# API

41

10.3 USB to UART (TTL) converter

For USB to UART (TTL) converter connection use Serial port in the robot base.

To use the Serial as a communication port, no settings need to be configured in the

Astorino software.

M8 connector pins:

1 – 5V,

2 - GND,

3 – TX,

4 – RX

Serial port (TLL) operates at 3.3V – connecting

5V might damage the CPU!

WARNING

ASTORINO C# API

42

11 Manufacturer information

For further questions, contact Kawasaki Robotics support.

Contact:

Kawasaki Robotics GmbH

tech-support@kawasakirobot.de

+49 (0) 2131 – 3426 – 1310

Kawasaki Robot

C# API Manual

2025-09: 4th Edition

Publication: KAWASAKI Robotics GmbH

Copyright © 2025 by KAWASAKI Robotics GmbH.

All rights reserved.

